1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution...1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])展开更多
In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s...This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.展开更多
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic sol...The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.展开更多
We present an existence theorem for at least one weak solution for a coupled system of integral equations of Volterra type in a reflexive Banach spaces relative to the weak topology.
本文利用Lalplace变换方法得到带连续红利的美式石看涨期权价格的积分表示,以及最优执行边界满足的一个非线性的第二类Volterra积分方程。然后用数值积分公式给出了积分方程的数值觯,从而得到了带连续红利的美式看涨期权价格及其执行边...本文利用Lalplace变换方法得到带连续红利的美式石看涨期权价格的积分表示,以及最优执行边界满足的一个非线性的第二类Volterra积分方程。然后用数值积分公式给出了积分方程的数值觯,从而得到了带连续红利的美式看涨期权价格及其执行边界的数值解。<正>In this paper, we apply Laplace transform to obtain an integral representation for the solution for American call options with continuous dividend, and get a nonlinear Volterra integral equation of the second kind for the optimal exercise boundary. Then we give the numerical solution to the integral equation using the quadrature formulae, and so get the numerical solution of the price of American call option with continuous dividend and the optimal exercise boundary.展开更多
文摘1. Introduction It is known that the following Cauchy problem for a parabolic partial differential equation (where the values at the right boundary, u.(1, t)=v(t) are unknown and sought for) is ill-posed: the solution (v) does not depend continuously on the data (g). In order to treat the ill-posedness and develop the numerical method, one reformulates the problem as a Volterra integral equation of the first kind wish a convolution type kernel (see Sneddon [1], Carslaw and Jaeger [2])
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
基金the financial support provided by the Swedish Research Council grant(2020-04697)the Norwegian Research Council grant(250768/F20),respectively。
文摘This paper deals with optimal combined singular and regular controls for stochastic Volterra integral equations,where the solution X^(u,ξ)(t)=X(t)is given X(t)=φ(t)+∫_(0)^(t) b(t,s,X(s),u(s))ds+∫_(0)^(t)σ(t,s,X(s),u(s))dB(s)+∫_(0)^(t)h(t,s)dξ(s).by Here d B(s)denotes the Brownian motion It?type differential,ξdenotes the singular control(singular in time t with respect to Lebesgue measure)and u denotes the regular control(absolutely continuous with respect to Lebesgue measure).Such systems may for example be used to model harvesting of populations with memory,where X(t)represents the population density at time t,and the singular control processξrepresents the harvesting effort rate.The total income from the harvesting is represented by J(u, ξ) = E[∫_(0)^(t) f_(0)(t,X(t), u(t))dt + ∫_(0)^(t)f_(1)(t,X(t))dξ(t) + g(X(T))] for the given functions f0,f1 and g,where T>0 is a constant denoting the terminal time of the harvesting.Note that it is important to allow the controls to be singular,because in some cases the optimal controls are of this type.Using Hida-Malliavin calculus,we prove sufficient conditions and necessary conditions of optimality of controls.As a consequence,we obtain a new type of backward stochastic Volterra integral equations with singular drift.Finally,to illustrate our results,we apply them to discuss optimal harvesting problems with possibly density dependent prices.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.
文摘We present an existence theorem for at least one weak solution for a coupled system of integral equations of Volterra type in a reflexive Banach spaces relative to the weak topology.
基金This work is supported by Ph.D.foundation of the Ministor of Education,China
文摘本文利用Lalplace变换方法得到带连续红利的美式石看涨期权价格的积分表示,以及最优执行边界满足的一个非线性的第二类Volterra积分方程。然后用数值积分公式给出了积分方程的数值觯,从而得到了带连续红利的美式看涨期权价格及其执行边界的数值解。<正>In this paper, we apply Laplace transform to obtain an integral representation for the solution for American call options with continuous dividend, and get a nonlinear Volterra integral equation of the second kind for the optimal exercise boundary. Then we give the numerical solution to the integral equation using the quadrature formulae, and so get the numerical solution of the price of American call option with continuous dividend and the optimal exercise boundary.