The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a...The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.展开更多
Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-sta...Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.展开更多
We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the p...We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal ...To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.展开更多
To address the problem that it is difficult to detect an intermediate frequency(IF)signal at the receiving end of a communication system under extremely low signal-to-noise ratio(SNR)conditions,we propose a stochastic...To address the problem that it is difficult to detect an intermediate frequency(IF)signal at the receiving end of a communication system under extremely low signal-to-noise ratio(SNR)conditions,we propose a stochastic resonance(SR)-enhanced sine-signal detection method based on the sign function.By analyzing the SR mechanism of the sine signal and combining it with the characteristics of a dual-sequence frequency-hopping(DSFH)receiver,a periodic stationary solution of the Fokker-Planck equation(FPE)with a time parameter is obtained.The extreme point of the sine signal is selected as the decision time,and the force law of the electromagnetic particles is analyzed.A receiving structure based on the sign function is proposed to maximize the output difference of the system,and the value condition of the sign function is determined.In order to further improve the detection performance,in combination with the central-limit theorem,the sampling points are averaged N times,and the signal-detection problem is transformed into a hypothesis-testing problem under a Gaussian distribution.The theoretical analysis and simulation experiment results confirm that when N is 100 and the SNR is greater than 20 dB,the bit-error ratio(BER)is less than 1.5×10^(-2) under conditions in which the signal conforms to the optimal SR parameters.展开更多
Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-pa...Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.展开更多
A novel method for extracting weak signal based on the theory of stochastic resonance was proposed. It was implemented by using the cooperative effect of noise instead of adding noise to a weak signal. The previous st...A novel method for extracting weak signal based on the theory of stochastic resonance was proposed. It was implemented by using the cooperative effect of noise instead of adding noise to a weak signal. The previous studies show that several disadvantages exist in the adding noise method. Due to the fact that adding noise to the weak signal will decline the signal-noise-radio(SNR) of the input of the nonlinear system, it will lower the detection effect. Additionally, the resonance point is determined manually, and also obvious offset of the peak position may occur in the result analyzed. Here the novel method was applied to analyze the weak laser-Raman spectrum of a CCl4 sample (liquid in capillary) which was measured with SPEX-1403 laser-Raman-spectrometer from 250 cm-1 to 418 cm-1 on 5 mW (output power of laser). The spectrum was analyzed with the novel method by varying the data to [-4\^13, 3\^50] and declining μ from 2.0 and compared with the result acquired by wavelet analysis. The results show that the novel method can greatly increase the SNR of input signal easily to detect the weak signal. With the deep research of the theory of stochastic resonance and improvement of the new method, it will probably become a power tool to analyze spectrum.展开更多
基金the National Natural Science Foundation of China(Grant No.61871318)the Key Research and Development Projects in Shaanxi Province(Grant No.2023YBGY-044)the Key Laboratory System Control and Intelligent Information Processing(Grant No.2020CP10)。
文摘The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61071025 and 61502538)
文摘Stochastic resonance (SR) has been proved to be an effective approach to extract weak signals overwhelmed in noise. However, the detection effect of current SR models is still unsatisfactory. Here, a coupled tri-stable stochastic resonance (CTSSR) model is proposed to further increase the output signal-to-noise ratio (SNR) and improve the detection effect of SR. The effects of parameters a, b, c, and r in the proposed resonance system on the SNR are studied, by which we determine a set of parameters that is relatively optimal to implement a comparison with other classical SR models. Numerical experiment results indicate that this proposed model performs better in weak signal detection applications than the classical ones with merits of higher output SNR and better anti-noise capability.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501525)the National Natural Science Foundation of Hunan Province of China(Grant No.2018JJ3680)。
文摘We propose a joint exponential function and Woods–Saxon stochastic resonance(EWSSR)model.Because change of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential function,it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter.In the novel system,the influence of different parameters on the shape of the potential function has its own emphasis,making it easier for us to adjust the shape of the potential function.The system can obtain different widths of the potential well or barrier height by adjusting one of these parameters,so that the system can match different types of input signals adaptively.By adjusting the system parameters,the potential function model can be transformed between the bistable model and the monostable model.The potential function of EWSSR has richer shapes and geometric characteristics.The effects of parameters,such as the height of the barrier and the width of the potential well,on SNR are studied,and a set of relatively optimal parameters are determined.Moreover,the EWSSR model is compared with other classical stochastic resonance models.Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other classical stochastic resonance models.Simultaneously,the EWSSR model is applied to the detection of actual bearing fault signals,and the detection effect is also superior to other models.
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
基金supported by the National Natural Science Foundation of China (61631015, 61501354, 61501356, and 61573202)the Fundamental Research Funds of the Ministry of Education (7215433803)+5 种基金the Foundation of State Key Laboratory of Integrated Services Networks (ISN1101002)Higher School Subject Innovation Engineering Plan (B08038)Science and Technology Innovation Team Key Plan of Shaanxi Province (2016KCT-01)The Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101)The Key Laboratory Foundation of Ministry of Industry and Information Technology (KF20181912)China Postdoctoral Science Foundation (2018M631122)
文摘To boost the performance of 4-ary pulse amplitude modulated(PAM) at low signal-to-noise ratio(SNR), bistable stochastic resonance(BSR) system is introduced into digital communications system and get a reliable signal detection scheme. In this paper, we first analyse BSR system for different amplitudes of 4-ary PAM signals. The steadystate of the bistable system will be statistically distinct, and the feasibility of the proposed detection scheme is confirmed. On this basis, we present a detailed study on steady-state transitions of the BSR system, and an explicit expression of the bistable system parameters is derived. By setting the bistable system parameters, bistable system, 4-ary PAM signal, and noise reach the resonance state, and the BSR-based detection scheme is implemented. Moreover, we derive an analytical expression to calculate the symbol error rate(SER) of 4-ary PAM signals with the BSR-based detection under additive white Gaussian noise(AWGN). Finally, the simulation results validate that BSR-based detection scheme can improve the detection performance while efficiently reducing the symbol error rate.
基金Project supported by the Natural Science Foundation of Hebei Province of China(Grant Nos.F2019506031,F2019506037,and F2020506036)the Frontier Innovation Program of Army Engineering University(Grant No.KYSZJQZL2005)the Basic Frontier Science and Technology Innovation Program of Army Engineering University(Grant No.KYSZJQZL2020).
文摘To address the problem that it is difficult to detect an intermediate frequency(IF)signal at the receiving end of a communication system under extremely low signal-to-noise ratio(SNR)conditions,we propose a stochastic resonance(SR)-enhanced sine-signal detection method based on the sign function.By analyzing the SR mechanism of the sine signal and combining it with the characteristics of a dual-sequence frequency-hopping(DSFH)receiver,a periodic stationary solution of the Fokker-Planck equation(FPE)with a time parameter is obtained.The extreme point of the sine signal is selected as the decision time,and the force law of the electromagnetic particles is analyzed.A receiving structure based on the sign function is proposed to maximize the output difference of the system,and the value condition of the sign function is determined.In order to further improve the detection performance,in combination with the central-limit theorem,the sampling points are averaged N times,and the signal-detection problem is transformed into a hypothesis-testing problem under a Gaussian distribution.The theoretical analysis and simulation experiment results confirm that when N is 100 and the SNR is greater than 20 dB,the bit-error ratio(BER)is less than 1.5×10^(-2) under conditions in which the signal conforms to the optimal SR parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.60551002)the Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3680).
文摘Based on adiabatic approximation theory,in this paper we study the asymmetric stochastic resonance system with time-delayed feedback driven by non-Gaussian colored noise.The analytical expressions of the mean first-passage time(MFPT)and output signal-to-noise ratio(SNR)are derived by using a path integral approach,unified colored-noise approximation(UCNA),and small delay approximation.The effects of time-delayed feedback and non-Gaussian colored noise on the output SNR are analyzed.Moreover,three types of asymmetric potential function characteristics are thoroughly discussed.And they are well-depth asymmetry(DASR),well-width asymmetry(WASR),and synchronous action of welldepth and well-width asymmetry(DWASR),respectively.The conclusion of this paper is that the time-delayed feedback can suppress SR,however,the non-Gaussian noise deviation parameter has the opposite effect.Moreover,the correlation time plays a significant role in improving SNR,and the SNR of asymmetric stochastic resonance is higher than that of symmetric stochastic resonance.Our experiments demonstrate that the appropriate parameters can make the asymmetric stochastic resonance perform better to detect weak signals than the symmetric stochastic resonance,in which no matter whether these signals have low frequency or high frequency,accompanied by strong or weak noise.
文摘A novel method for extracting weak signal based on the theory of stochastic resonance was proposed. It was implemented by using the cooperative effect of noise instead of adding noise to a weak signal. The previous studies show that several disadvantages exist in the adding noise method. Due to the fact that adding noise to the weak signal will decline the signal-noise-radio(SNR) of the input of the nonlinear system, it will lower the detection effect. Additionally, the resonance point is determined manually, and also obvious offset of the peak position may occur in the result analyzed. Here the novel method was applied to analyze the weak laser-Raman spectrum of a CCl4 sample (liquid in capillary) which was measured with SPEX-1403 laser-Raman-spectrometer from 250 cm-1 to 418 cm-1 on 5 mW (output power of laser). The spectrum was analyzed with the novel method by varying the data to [-4\^13, 3\^50] and declining μ from 2.0 and compared with the result acquired by wavelet analysis. The results show that the novel method can greatly increase the SNR of input signal easily to detect the weak signal. With the deep research of the theory of stochastic resonance and improvement of the new method, it will probably become a power tool to analyze spectrum.