An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er...An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.展开更多
Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy d...Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.展开更多
A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can...A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can simplify the realization of the non-linear interpolated vector quantization (NLIVQ) technique and make the partial distance search (PDS) algorithm more efficient. Utilizing the relationship of vector L2-norm and its Euclidean distance, some conditions of eliminating unnecessary codewords are obtained. Further, using inequality constructed by the subvector L2-norm, more unnecessary codewords are eliminated. During the search process for code, mostly unlikely codewords can be rejected by the proposed algorithm combined with the non-linear interpolated vector quantization technique and the partial distance search technique. The experimental results show that the reduction of computation is outstanding in the encoding time and complexity against the full search method.展开更多
A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior prob...A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior probability (SMAP) rule, firstly, the likelihood probability of HMT model for each pattern is computed from fine to coarse procedure. Then, the interscale state transition probability is solved using Expectation Maximum (EM) algorithm based on hybrid-quadtree and multiscale context information is fused from coarse to fine procedure. In order to get pixel-level segmentation, the redundant wavelet domain Gaussian mixture model (GMM) is employed to formulate pixel-level statistical property. The experiment results show that the proposed scheme is feasible and robust.展开更多
The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the follow...The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.展开更多
In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? al...In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? algorithm, the new algorithm has better practicability andwider application range. Simulation results show that the proposed impulse response identificationalgorithm can be applied to both deterministic and random systems, and is of higher identificationprecision, stronger anti-noise interference ability and better system dynamic tracking property.展开更多
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re...>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.展开更多
基金Sponsored by the Nature Science Foundation of Jiangsu(BK2009410)
文摘An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.
文摘Through research for image compression based on wavelet analysis in recent years, we put forward an adaptive wavelet decomposition strategy. Whether sub-images are to be decomposed or not are decided by their energy defined by certain criterion. Then we derive the adaptive wavelet decomposition tree (AWDT) and the way of adjustable compression ratio. According to the feature of AWDT, this paper also deals with the strategies which are used to handle different sub-images in the procedure of quantification and coding of the wavelet coefficients. Through experiments, not only the algorithm in the paper can adapt to various images, but also the quality of recovered image is improved though compression ratio is higher and adjustable. When their compression ratios are near, the quality of subjective vision and PSNR of the algorithm are better than those of JPEG algorithm.
基金the National Natural Science Foundation of China (60602057)the NaturalScience Foundation of Chongqing Science and Technology Commission (2006BB2373).
文摘A fast encoding algorithm based on the mean square error (MSE) distortion for vector quantization is introduced. The vector, which is effectively constructed with wavelet transform (WT) coefficients of images, can simplify the realization of the non-linear interpolated vector quantization (NLIVQ) technique and make the partial distance search (PDS) algorithm more efficient. Utilizing the relationship of vector L2-norm and its Euclidean distance, some conditions of eliminating unnecessary codewords are obtained. Further, using inequality constructed by the subvector L2-norm, more unnecessary codewords are eliminated. During the search process for code, mostly unlikely codewords can be rejected by the proposed algorithm combined with the non-linear interpolated vector quantization technique and the partial distance search technique. The experimental results show that the reduction of computation is outstanding in the encoding time and complexity against the full search method.
文摘A novel algorithm for Bayesian document segmentation is proposed based on the wavelet domain hidden Markov tree (HMT) model. Once the parameters of model are known, according to the sequential maximum a posterior probability (SMAP) rule, firstly, the likelihood probability of HMT model for each pattern is computed from fine to coarse procedure. Then, the interscale state transition probability is solved using Expectation Maximum (EM) algorithm based on hybrid-quadtree and multiscale context information is fused from coarse to fine procedure. In order to get pixel-level segmentation, the redundant wavelet domain Gaussian mixture model (GMM) is employed to formulate pixel-level statistical property. The experiment results show that the proposed scheme is feasible and robust.
文摘The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.
文摘In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? algorithm, the new algorithm has better practicability andwider application range. Simulation results show that the proposed impulse response identificationalgorithm can be applied to both deterministic and random systems, and is of higher identificationprecision, stronger anti-noise interference ability and better system dynamic tracking property.
基金Project Supported by National Natural Science Foundation of China ( 50777069 ).
文摘>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers.