A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocatio...A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.展开更多
Center wavelength shift of vertical cavity surface emitting laser light in arrayed waveguide gratings is verified with mathematical and experimental analysis.It is induced by the linearly increasing trend of optical p...Center wavelength shift of vertical cavity surface emitting laser light in arrayed waveguide gratings is verified with mathematical and experimental analysis.It is induced by the linearly increasing trend of optical power of vertical cavity surface emitting laser by bias current increase.It is retrieved effectively to the original center wavelength by simple correction method of compensation.This was done for application of vertical cavity surface emitting laser as a light source in optical line terminal of wavelength division multiplexing-passive optical network.展开更多
基金Supported by the National Key Research and Development Program of China(2021YFB2800201)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43000000)。
文摘A 16-channel arrayed waveguide grating(AWG)with an 800 GHz channel spacing in the O-band has been developed and fabricated based on silica planar lightwave circuit(PLC)technology.By extending the wave⁃length allocation from 8 channels to 16 channels as specified in IEEE 802.3bs,we increased the number of chan⁃nels and boosted transmission capacity to meet the 1.6 Tbps and higher-speed signal transmission requirements for future data centers.Through optimizing the AWG structure,it has achieved insertion loss(IL)better than-1.61 dB,loss uniformity below 0.35 dB,polarization-dependent loss(PDL)below 0.35 dB,adjacent channel cross⁃talk under-20.05 dB,ripple less than 0.75 dB,center wavelength offset under 0.22 nm and 1 dB bandwidth ex⁃ceeding 2.88 nm.The AWG has been successfully measured to transmit 53 Gbaud 4-level pulse amplitude modu⁃lation(PAM4)signal per channel and the total transmission speed can reach over 1.6 Tbps.
基金The Korea Communications Commissions,Government Funded Project(Low-cost and high-capacity NG-PON2 core technology for next generation multi-service applicable access platform)
文摘Center wavelength shift of vertical cavity surface emitting laser light in arrayed waveguide gratings is verified with mathematical and experimental analysis.It is induced by the linearly increasing trend of optical power of vertical cavity surface emitting laser by bias current increase.It is retrieved effectively to the original center wavelength by simple correction method of compensation.This was done for application of vertical cavity surface emitting laser as a light source in optical line terminal of wavelength division multiplexing-passive optical network.