期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Scalable Ir‑Doped NiFe_(2)O_(4)/TiO_(2) Heterojunction Anode for Decentralized Saline Wastewater Treatment and H_(2) Production
1
作者 Sukhwa Hong Jiseon Kim +3 位作者 Jaebeom Park Sunmi Im Michael R.Hoffmann Kangwoo Cho 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期1-18,共18页
Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study... Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater. 展开更多
关键词 wastewater electrolysis cell Ir-doped NiFe_(2)O_(4) Reactive chlorine species Decentralized H_(2)production On-site wastewater treatment
在线阅读 下载PDF
Application of metal organic framework in wastewater treatment 被引量:6
2
作者 Xiaoge Liu Yuying Shan +2 位作者 Songtao Zhang Qingquan Kong Huan Pang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期698-721,共24页
Water pollution is an increasingly serious environmental problem because many pollutants have carcinogenic effects on humans and aquatic organisms.Metal organic framework(MOF),made up of metal ions and multifunctional... Water pollution is an increasingly serious environmental problem because many pollutants have carcinogenic effects on humans and aquatic organisms.Metal organic framework(MOF),made up of metal ions and multifunctional organic ligands,has been one of the most concerned materials because of its adjustable and regular pore structure.MOFs have always shown attractive advantages in membrane separation and adsorption technologies,among which water-stable MOFs are particularly prominent in wastewater treatment(WWT)applications.This review systematically summarizes the application of MOF membranes in membrane filtration,membrane pervaporation and membrane distillation.Also,the adsorption mechanisms of heavy metals,dyes and antibacterials in wastewater have been concluded.In order to tap the full application potential of pristine MOFs in sustainable wastewater treatment,current challenges are discussed in detail and future research directions are proposed. 展开更多
关键词 Metal-organic framework Membranes ADSORPTION wastewater treatment
在线阅读 下载PDF
Cellulose-based materials in wastewater treatment of petroleum industry 被引量:6
3
作者 Baoliang Peng Zhaoling Yao +3 位作者 Xiaocong Wang Mitchel Crombeen Dalton GSweeney Kam Chiu Tam 《Green Energy & Environment》 CSCD 2020年第1期37-49,共13页
The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine a... The most abundant natural biopolymer on earth, cellulose fiber, may offer a highly efficient, low-cost, and chemical-free option for wastewater treatment. Cellulose is widely distributed in plants and several marine animals. It is a carbohydrate polymer consisting of β-1,4-linked anhydro-D-glucose units with three hydroxyl groups per anhydroglucose unit(AGU). Cellulose-based materials have been used in food, industrial, pharmaceutical, paper, textile production, and in wastewater treatment applications due to their low cost, renewability,biodegradability, and non-toxicity. For water treatment in the oil and gas industry, cellulose-based materials can be used as adsorbents, flocculants, and oil/water separation membranes. In this review, the uses of cellulose-based materials for wastewater treatment in the oil & gas industry are summarized, and recent research progress in the following aspects are highlighted: crude oil spill cleaning, flocculation of solid suspended matter in drilling or oil recovery in the upstream oil industry, adsorption of heavy metal or chemicals, and separation of oil/water by cellulosic membrane in the downstream water treatment. 展开更多
关键词 CELLULOSE wastewater treatment Petroleum industry
在线阅读 下载PDF
Commercial Application of Technology for Catalytic Combustion of Waste Gases from Wastewater Treatment System in Petrochemical Enterprises 被引量:1
4
作者 Chen Yuxiang Wang Xuehai +1 位作者 Liu Zhongsheng Wang Xin (Fushun Research Institute of Petroleum and Petrochemicals,SINOPEC,Fushun 113001) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2009年第3期29-32,共4页
The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this tech... The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard. 展开更多
关键词 wastewater treatment system catalytic combustion CATALYST DESULFURIZATION total hydrocarbon concentration homogenization waste gases fouling gases nasty odor
在线阅读 下载PDF
Applications of artificial intelligence technology to wastewater treatment fields in China
5
作者 卿晓霞 《Journal of Chongqing University》 CAS 2005年第4期213-217,共5页
Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of ... Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed. 展开更多
关键词 wastewater treatment artificial intelligence Artificial Neuron Network intelligent control fuzzy control
在线阅读 下载PDF
Substituted plan analysis in the environmental impact assessment of Yongchuan wastewater treatment project
6
作者 方俊华 《Journal of Chongqing University》 CAS 2006年第2期107-110,共4页
Substituted plan in the environmental impact assessment (EIA) mainly means the treatment technology and the substituted site of plant, and it also includes the many kinds of environment protection measures. This paper... Substituted plan in the environmental impact assessment (EIA) mainly means the treatment technology and the substituted site of plant, and it also includes the many kinds of environment protection measures. This paper will make detailed analysis on the treatment technology, the substituted site of plant, the purpose of discharged water and the dispose of sludge in the Yongchuan wastewater treatment project. 展开更多
关键词 wastewater treatment project Environmental impact assessment (EIA) Substituted plan
在线阅读 下载PDF
Treatment of drilling wastewater using a weakly basic resin 被引量:4
7
作者 Lu Rongh Mu Bo Zhang Hongyan Guo Shaohui 《Petroleum Science》 SCIE CAS CSCD 2008年第3期275-279,共5页
Macroporous weak basic anion exchanger (D301R) was used to remove organic substances from drilling wastewater. The effect of pH, temperature and contact time on adsorption behavior was investigated in batch experime... Macroporous weak basic anion exchanger (D301R) was used to remove organic substances from drilling wastewater. The effect of pH, temperature and contact time on adsorption behavior was investigated in batch experiments, which indicated that the COD (Chemical Oxygen Demand) removal ratio of drilling wastewater was approximately 90%, and the COD of treated wastewater was below 70 mg/L under appropriate operating conditions. A mixed liquor of NaOH and NaCI was selected as desorbent because of its better elution performance. The results of column dynamic adsorption and regeneration showed that the COD of wastewater could be efficiently removed by D301R resin, and the resin was easily regenerated by the selected desorbent. 展开更多
关键词 Ion-exchange drilling wastewater weak basic anion resin wastewater treatment
在线阅读 下载PDF
Treatment of Wastewater Containing Heavy Metals Using Dissolved Air Released Flotation Column
8
作者 LI Xiao-bing LIU Jiong-tian WANG Yong-tian CAO Yi-jun 《Journal of China University of Mining and Technology》 EI 2005年第3期187-191,共5页
A new type of dissolved air released flotation column is developed to treat wastewater containing Cr(Ⅵ) based on advantages of both dissolved air floatation and column floatation. By using a column with a diameter ... A new type of dissolved air released flotation column is developed to treat wastewater containing Cr(Ⅵ) based on advantages of both dissolved air floatation and column floatation. By using a column with a diameter of 50 mm and a specially made dissolved air releaser, micro-bubbles inside the column can be formed. N2H4H2O was used as reductant, AlCl3 as flocculant, C12H25SO3Na(SDS) as surfactant in the experiment. The effects of pH of wastewater, pressure of dissolved air, ratio of return water, and concentration of flocculant and surfactant on the removal efficiency are studied. The results show that the efficiency of dissolved air released flotation column is much higher than that of other approaches after the operation parameters are optimized, with the reduction ratio of Cr(Ⅵ ) in wastewater reaching 98%. So this technique can be widely used in wastewater treatment 展开更多
关键词 dissolved air released flotation column wastewater treatment heavy metal
在线阅读 下载PDF
Review on reactive species in water treatment using electrical discharge plasma:formation, measurement, mechanisms and mass transfer 被引量:10
9
作者 Yang CAO Guangzhou QU +2 位作者 Tengfei LI Nan JIANG Tiecheng WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第10期6-22,共17页
In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the elec... In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the electrical discharge plasma are reviewed, and their possible roles in the degradation of contaminants are discussed. Measurement methods for the quantification of important reactive species and their advantages and shortcomings are presented. Approaches on how to enhance the diffusion of the reactive species in solution are examined. In addition, the formation of typical reactive species in different electrical discharge plasma is compared. 展开更多
关键词 advanced oxidation process electrical discharge plasma reactive species wastewater treatment
在线阅读 下载PDF
Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination 被引量:5
10
作者 Rui Zhang Xiaoying Xu +1 位作者 Bing Cao Pei Li 《Petroleum Science》 SCIE CAS CSCD 2018年第1期146-156,共11页
The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite m... The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite membranes have high application value in industrial wastewater treatment. By varying the membrane fabrication parameters including the weight percent(wt%) of the PMDA, the crosslink temperature and duration, membrane with the best desalination performance was obtained. The composite membrane with a 2-lm-thick PVA selective layer containing 20 wt% of PMDA and being crosslinked at 100 °C for 2 h showed the highest Na Cl rejection of 99.98% with a water flux of 32.26 L/(m^2 h)at 70 °C using the 35,000 ppm Na Cl aqueous solution as feed. FTIR spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron microscope have been used to characterize the structures and properties of both the crosslinked PVA dense films and PVA/PAN composite membranes. The effects of the concentrations of PMDA,the crosslinking time and temperature to the membrane water contact angle, swelling degree, salt rejection and water flux were systematically studied. 展开更多
关键词 Pervaporation - Desalination Crosslinked PVA Composite membranes wastewater treatment
在线阅读 下载PDF
Activated Carbon from Rice Husk with One-Step KOH Mechanical Mixing Activation as Adsorbent for Treating Phenolic Wastewater 被引量:2
11
作者 Jiang Bolong Jiang Nan +1 位作者 Shi Shunjie Cui Yanyan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第4期108-119,共12页
This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activa... This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data. 展开更多
关键词 Rice husk activated carbon KOH activation wastewater treatment P-NITROPHENOL PHENOL
在线阅读 下载PDF
Degradation of Aniline Wastewater Using Dielectric Barrier Discharges at Atmospheric Pressure 被引量:2
12
作者 武海霞 方志 徐炎华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第3期228-234,共7页
Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study t... Aniline is a toxic water pollutant detected in drinking water and surface water, and this chemical is harmful to both human and aquatic life. A dielectric barrier discharge (DBD) reactor was designed in this study to investigate the treatment of aniline in aqueous solution. Discharge characteristics were assessed by measuring voltage and current waveforms, capturing light emission images, and obtaining optical emission spectra. The effects of several parameters were analyzed, including treatment distance, discharge power, DBD treatment time, initial pH of aniline solutions, and addition of sodium carbonate and hydrogen peroxide to the treatment. Aniline degradation increased with increasing discharge power. Under the same conditions, higher degradation was obtained at a treatment distance of 0 mm than at other treatment distances. At a discharge power of 21.5 W, 84.32% of aniline was removed after 10 rain of DBD treatment. Initial pH significantly influenced aniline degradation. Adding a certain dosage of sodium carbonate and hydrogen peroxide to the wastewater can accelerate the degradation rate of aniline. Possible degradation pathways of aniline by DBD plasmas were proposed based on the analytical data of GC/MS and TOC. 展开更多
关键词 Non-thermal plasma (NTP) dielectric barrier discharge (DBD) aniline degradation wastewater treatment
在线阅读 下载PDF
Exploring the cooperation effect of DBD byproducts and Ag/TiO_2 catalyst for water treatment in an APPJ system 被引量:1
13
作者 Guangliang CHEN Wei HU +2 位作者 Jinsong YU Wenxia CHEN Jun HUANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第1期64-71,共8页
In this paper,the collective effects of combining heterogeneous Ag/TiO2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O3 species) of an atmospheric pressure plasma jet(APPJ) system o... In this paper,the collective effects of combining heterogeneous Ag/TiO2 nanocomposite catalyst with the byproducts(primarily the irradiation and the O3 species) of an atmospheric pressure plasma jet(APPJ) system on the degradation of methyl orange(MO) were explored.The heterostructured Ag/TiO2 nanocomposite was achieved via decorating the Ag quantum dots(QDs) on the commercially available TiO_2catalyst(P25) through a hydrothermal method.The x-ray diffraction analysis of the nanocomposite catalyst showed the diffraction peaks at 44.3°,64.4°,and 77.5°,corresponding to the Ag planes of(200),(220) and(311),respectively.The high resolution transmission electron microscope characterization of the nanocomposite catalyst indicated that the Ag QDs with an average diameter of 5 nm were homogeneously distributed on the P25 surface.The experimental results on the MO photodegradation showed that the APPJ irradiation had a marginal effect on the cleavage of the MO molecules.When the Ag/TiO2 nanocomposite catalyst was used,the photodegradation rate of MO increased about 5 times.When both the APPJ byproducts and the Ag/TiO2 nanocomposite catalyst were used,however,over 90% of the MO in the tested solution was cleaved within 15 min,and the energy efficiency was about 0.6 g/k W h.Moreover,an optimal Ag dosage value was determined(6 wt%).The catalytic results indicated that combining the DBD plasma byproducts with heterogeneous nanocomposite catalysts may be an effect protocol for decreasing the application cost of the DBD system and mitigating the environment pollution by organic dyes in the textile industry. 展开更多
关键词 APPJ plasma byproduct heterostructured catalyst organic wastewater treatment
在线阅读 下载PDF
10 Towards a Safer Environment:(7)How apatite minerals remediate Pb,Zn and Mn from wastewater?
14
作者 Samy Mohamed Abdallah 《水道港口》 2010年第5期543-543,共1页
To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apati... To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.During metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption. This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to take up Pb2+,Zn+2 and Mn+2.The first is (ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is (dissolution- precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral. 展开更多
关键词 Abha industrial city wastewater treatment apatite minerals heavy metals retention in situ remediation
在线阅读 下载PDF
Self-templating synthesis of biomass-based porous carbon nanotubes for energy storage and catalytic degradation applications
15
作者 Manman Xu Shiqi Fu +7 位作者 Yukai Wen Wei Li Qiongfang Zhuo Haida Zhu Zhikeng Zheng Yuwen Chen Anqi Wang Kai Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期584-595,共12页
Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs o... Dwindling energy sources and a worsening environment are huge global problems,and biomass wastes are an under-exploited source of material for both energy and material generation.Herein,self-template decoction dregs of Ganoderma lucidum-derived porous carbon nanotubes(ST-DDLGCs)were synthesized via a facile and scalable strategy in response to these challenges.ST-DDLGCs exhibited a large surface area(1731.51 m^(2)g^(-1))and high pore volume(0.76 cm^(3)g^(-1)),due to the interlacing tubular structures of precursors and extra-hierarchical porous structures on tube walls.In the ST-DDLGC/PMS system,the degradation efficiency of capecitabine(CAP)reached~97.3%within 120 min.Moreover,ST-DDLGCs displayed high catalytic activity over a wide pH range of 3–9,and strong anti-interference to these typical and ubiquitous anions in wastewater and natural water bodies(i.e.,H_(2)PO_(4)^(-),NO_(3)^(-),Cl^(-) and HCO_(3)^(-)),in which a ^(1)O_(2)-dominated oxidation was identified and non-radical mechanisms were deduced.Additionally,ST-DDLGC-based coin-type symmetrical supercapacitors exhibited outstanding electrochemical performance,with specific capacitances of up to 328.1 F g^(-1)at 0.5 A g^(-1),and cycling stability of up to 98.6%after 10,000 cycles at a current density of 2 A g^(-1).The superior properties of ST-DDLGCs could be attributed to the unique porous tubular structure,which facilitated mass transfer and presented numerous active sites.The results highlight ST-DDLGCs as a potential candidate for constructing inexpensive and advanced environmentally functional materials and energy storage devices. 展开更多
关键词 Ganoderma lucidum residue Porous carbon nanotubes Self-template method wastewater treatment Supercapacitor electrode
在线阅读 下载PDF
Mechanistic study on 4,4'-sulfonylbis removal with CO_(2)/Ar gas-liquid DBD plasma
16
作者 Guangjia WANG Shidong FANG +2 位作者 Baoguo LIN Chengzhu ZHU Jie SHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期82-92,共11页
In this study,a single dielectric barrier discharge(DBD)coaxial reactor was used to degrade 4,4'-sulfonylbis(TBBPS)in water using greenhouse gas(CO_(2))and argon as the carrier gases.The investigation focused on C... In this study,a single dielectric barrier discharge(DBD)coaxial reactor was used to degrade 4,4'-sulfonylbis(TBBPS)in water using greenhouse gas(CO_(2))and argon as the carrier gases.The investigation focused on CO_(2)conversion,reactive species formation,gas-liquid mass transfer mechanism,and degradation mechanism of TBBPS during the discharge plasma process.With the decrease of CO_(2)/Ar ratio in the process of plasma discharge,the emission spectrum intensity of Ar,CO_(2)and excited reactive species was enhanced.This increase promoted collision and dissociation of CO_(2),resulting in a series of chemical reactions that improved the production of reactive species such as·OH,^(1)O_(2),H_(2)O_(2)and O_(3).These reactive species initiated a sequence of reactions with TBBPS.Results indicated that at a gas flow rate of 240 mL/min with a CO_(2)/Ar ratio of 1:5,both the highest CO_(2)conversion rate(17.76%)and TBBPS degradation rate(94.24%)were achieved.The degradation mechanism was elucidated by determining types and contents of reactive species present in treatment liquid along with analysis of intermediate products using liquid chromatography-mass spectrometry techniques.This research provides novel insights into carbon dioxide utilization and water pollution control through dielectric barrier discharge plasma technology. 展开更多
关键词 dielectric barrier discharge carbon dioxide conversion 4 4'-sulfonylbis wastewater treatment
在线阅读 下载PDF
Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism 被引量:10
17
作者 Yongji Zhang HuiJuan Chi +4 位作者 WenHui Zhang Youyi Sun Qing Liang Yu Gu Riya Jing 《Nano-Micro Letters》 SCIE EI CAS 2014年第1期80-87,共8页
Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capa... Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater. 展开更多
关键词 POLYVINYLPYRROLIDONE Graphene oxide Cu ions wastewater treatment Adsorption mechanism Density functional theory
在线阅读 下载PDF
Poly(ionic liquid)-crosslinked graphene oxide/carbon nanotube membranes as efficient solar steam generators 被引量:4
18
作者 Jiangjin Han Zhiyue Dong +2 位作者 Liang Hao Jiang Gong Qiang Zhao 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期151-162,共12页
Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination... Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination. 展开更多
关键词 Solar energy Graphene oxide Poly(ionic liquid)s Solar steam generation wastewater treatment
在线阅读 下载PDF
Degradation of Organic Compounds by Active Species Sprayed in a Dielectric Barrier Corona Discharge System 被引量:4
19
作者 李杰 宋玲 +3 位作者 刘强 屈广周 李国锋 吴彦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期211-215,共5页
Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped t... Investigation was made into the degradation of organic compounds by a dielectric barrier corona discharge (DBCD) system. The DBCD, consisting of a quartz tube, a concentric high voltage electrode and a net wrapped to the external wall (used as ground electrode), was introduced to generate active species which were sprayed into the organic solution through an aerator fixed on the bottom of the tube. The effect of four factors-the discharge voltage, gas flow rate, solution conductivity, and pH of wastewater, on the degradation efficiency of phenol was assessed. The obtained results demonstrated that this process was an effective method for phenol degradation. The degradation rate was enhanced with the increase in power supplied. The degradation efficiency in alkaline conditions was higher than those in acid and neutral conditions. The optimal gas flow rate for phenol degradation in the system was 1.6 L/min, while the solution conductivity had little effect on the degradation. 展开更多
关键词 dielectric barrier corona discharge (DBCD) active species organic compound degradation wastewater treatment
在线阅读 下载PDF
Discoloration of Congo Red by Rod-Plate Dielectric Barrier Discharge Processes at Atmospheric Pressure 被引量:4
20
作者 武海霞 方志 +2 位作者 周侗 陆晨 徐炎华 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第5期500-505,共6页
A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the... A dielectric barrier discharge (DBD) reactor with a rod-plate electrode configuration was used for the oxidative decomposition of Congo red dye in an aqueous solution. Plasma was generated in the gas space above the water interface under atmospheric pressure. Discharge characteristics were analyzed by voltage-current waveforms. Effects of applied voltage, initial conductivity, and initial concentration were also analyzed. Congo red discoloration increased with increased applied voltage and decreased conductivity. The initial conductivity significantly influenced the Congo red discoloration. Under the same conditions, the highest discoloration rate was obtained at 25 mg/L. The presence of ferrous ions in the solutions had a substantial positive effect on Fenton dye degradation and flocculation. At an applied voltage of 20 kV, about 100% of dye was degraded after 4 min of Fe^2+/DBD treatment. Results showed that adding a certain dosage of hydrogen peroxide to the wastewater could enhance the discoloration rate. Possible pathways of Congo red discoloration by DBD plasma were proposed based on GC/MS, FTIR, and UV-vis spectroscopy analyses. 展开更多
关键词 dielectric barrier discharge (DBD) Congo red (CR) DISCOLORATION wastewater treatment
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部