期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于MAFM-YOLOv8的学生课堂表现检测
1
作者 莫建文 姜贵昀 +1 位作者 袁华 梁豪昌 《计算机工程与设计》 北大核心 2025年第6期1825-1831,共7页
针对智慧教室场景中学生课堂表现检测遇到的目标尺度大小不一、容易出现遮挡、目标密集度高、重叠以及小目标等问题,提出一种基于MAFM-YOLOv8的学生课堂表现检测模型。提出一个多尺度自适应特征提取模块,增强模型对不同尺度特征信息的... 针对智慧教室场景中学生课堂表现检测遇到的目标尺度大小不一、容易出现遮挡、目标密集度高、重叠以及小目标等问题,提出一种基于MAFM-YOLOv8的学生课堂表现检测模型。提出一个多尺度自适应特征提取模块,增强模型对不同尺度特征信息的自适应特征提取能力,用深度可分离卷积代替普通卷积,减少模块中卷积的计算量;采用高效多尺度注意力模块,增强模型对小目标的特征提取能力;采用WIOU损失函数来增强模型在类别不均衡数据集上的训练效果,提升检测性能。实验结果表明,改进YOLOv8算法在学生课堂表现检测中mAP50达到了87.2%,相比原模型提升了3.2%,验证该方法可以有效提高检测精度。 展开更多
关键词 智慧教室 学生课堂表现检测 MAFM-YOLOv8 多尺度自适应特征提取模块 深度可分离卷积 高效多尺度注意力 wiou损失函数
在线阅读 下载PDF
基于坐标注意力和软化非极大值抑制的密集安全帽检测
2
作者 尹向雷 苏妮 +1 位作者 解永芳 屈少鹏 《现代电子技术》 北大核心 2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进... 为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。 展开更多
关键词 安全帽检测 坐标注意力机制 软化非极大值抑制 YOLOv5s wiou 边界框损失函数
在线阅读 下载PDF
基于改进YOLOv8n的轻量化辣椒花目标检测方法 被引量:1
3
作者 匡敏球 李旭 +5 位作者 陈熵 刘大为 向阳 刘峰 吴艳华 谢方平 《农业工程学报》 北大核心 2025年第12期198-207,共10页
辣椒花目标检测是机械授粉的基础,为提高自然环境下辣椒花目标检测的精度,该研究提出了一种基于改进YOLOv8n的轻量化辣椒花目标检测模型YOLOv8n-Chili Flower。首先,在Neck层引入高效多尺度轻量化注意力机制模块EMA(efficient multi-sca... 辣椒花目标检测是机械授粉的基础,为提高自然环境下辣椒花目标检测的精度,该研究提出了一种基于改进YOLOv8n的轻量化辣椒花目标检测模型YOLOv8n-Chili Flower。首先,在Neck层引入高效多尺度轻量化注意力机制模块EMA(efficient multi-scale attention),提升模型对辣椒花特征的识别能力,从而增强检测的灵敏度和准确性;其次,在模型的Backbone层将C2f模块替换为GSConv(group separable convolution)模块,减少不必要的信息冗余,防止特征信息丢失,在提高注意力机制模块效果的同时,降低了模型的复杂度;最后,采用WIoU(weighted intersection over union)损失函数替换CIoU(complete intersection over union)损失函数,优化回归损失的计算,并引入平滑项更准确地计算边界框的重叠度,实现模型更精确匹配辣椒花的形状和分布,从而加快了模型收敛并提高检测精度。结果表明,YOLOv8n-Chili Flower模型的召回率和平均精度均值分别为94.6%和95.9%,较原始YOLOv8n模型分别提升了0.9和0.6个百分点,浮点计算量、参数量和模型大小分别为7.2 G、2.39 M和5.0 MB,较原模型分别降低了12.20%、20.60%和20.63%。与YOLOv5s、YOLOv7tiny、YOLOv8s和YOLOv9主流模型相比,改进模型能够更好地平衡平均精度均值和轻量化,将改进模型部署至NVIDIA Jetson AGX Orin计算平台上开展真实场景测试,正确检测率和检测帧率分别为83.25%和99.02帧/s,具有较好的正确检测率和检测速度。该研究可为辣椒机械授粉的花朵实时检测和轻量化部署提供一定的技术支持。 展开更多
关键词 YOLOv8n 目标检测 辣椒花 EMA注意力机制 GSConv模块 wiou损失函数 轻量化模型
在线阅读 下载PDF
基于FEW-YOLOv8遥感图像目标检测算法 被引量:1
4
作者 席阳丽 屈丹 +1 位作者 王芳芳 都力铭 《郑州大学学报(工学版)》 北大核心 2025年第4期62-69,共8页
针对遥感图像目标检测任务中进行特征提取时缺少小目标信息,特征融合过程中部分信息丢失,小目标特征信息不明显,导致小目标检测精度不高的问题,提出了一种基于FEW-YOLOv8模型的遥感图像目标检测算法。首先,优化骨干网络架构,使用Faster... 针对遥感图像目标检测任务中进行特征提取时缺少小目标信息,特征融合过程中部分信息丢失,小目标特征信息不明显,导致小目标检测精度不高的问题,提出了一种基于FEW-YOLOv8模型的遥感图像目标检测算法。首先,优化骨干网络架构,使用FasterNet骨干网络,更有效地提取了遥感图像中小目标的空间特征,使得网络模型更专注于微小目标,从而提升小目标检测精度。其次,使用EMA注意力与C2f构建全新的C2f_EMA模块,替换Neck结构中的C2f模块,在融合特征前进行特征注意力加强操作,使网络模型更突出特征信息中小目标部分,有效解决特征融合过程中小目标特征丢失问题。最后,采用带有动态非单调FM的WIoUv3作为边界框的损失函数,提高了模型的边界框定位精度,并且提升了对小目标的检测性能。实验结果显示:在NWPU VHR-10数据集上经过优化的YOLOv8算法的mAP 50相较于原始YOLOv8算法提高了7.71百分点,在HRSC2016和DOTA v1.0上分别提高了9.70百分点和12.32百分点,证明所提算法能够有效提升遥感图像中小目标的检测精度。 展开更多
关键词 遥感图像 YOLOv8 FasterNet骨干网络 EMA注意力机制 wiou损失函数
在线阅读 下载PDF
基于深度学习的工业轴承缺陷检测算法研究 被引量:1
5
作者 张彪 荀荣科 许家忠 《仪器仪表学报》 北大核心 2025年第4期136-149,共14页
针对现有轴承缺陷检测算法准确率低、存在误检以及漏检现象严重的问题,为解决这些问题,提出了一种基于YOLOv8n的轴承缺陷检测算法(LASW-YOLOv8)。该算法在YOLOv8n的基础上,引入了轻量化且高效的LiteShiftHead检测头,结合SPConv、REG和CL... 针对现有轴承缺陷检测算法准确率低、存在误检以及漏检现象严重的问题,为解决这些问题,提出了一种基于YOLOv8n的轴承缺陷检测算法(LASW-YOLOv8)。该算法在YOLOv8n的基础上,引入了轻量化且高效的LiteShiftHead检测头,结合SPConv、REG和CLS模块,提升了特征提取、目标框回归和类别分类的效率与准确性。此外,算法还引入了自适应旋转卷积核模块(ARConv),增强了对多方向缺陷的检测能力;颈部网络优化模块(SAF)进一步提升了特征提取效率;同时采用Inner-WIoU损失函数,通过优化边界框定位精度并增强对小目标及复杂形状缺陷的检测能力。实验结果表明,LASW-YOLOv8算法在多个性能指标上优于其他主流算法。该算法的准确率和召回率分别提升至97.2%和96.6%,相较于YOLOv8n分别提高了3.4%和4.5%。同时,mAP0.5和mAP0.5:0.95分别达到了98.9%和73.3%,并且在运行速度上实现了83 fps。这些结果充分证明了所提改进算法的有效性,不仅能有效减少误检和漏检现象,还满足了工业检测对高准确率和实时性的要求。此外,在东北大学公共数据集(NEU-DET)的实验中,LASW-YOLOv8算法在准确率、召回率、mAP0.5和mAP0.5:0.95这4个关键指标上均表现最佳,分别为79.3%、79.9%、84.1%和49.1%,优于其他主流算法。这一表现证明了LASW-YOLOv8算法具有出色的泛化能力和鲁棒性。 展开更多
关键词 轴承缺陷检测 LASW-YOLOv8 LiteShiftHead ARConv Inner-wiou损失函数
在线阅读 下载PDF
基于改进YOLOv8n的隧道内异物检测算法 被引量:3
6
作者 桂佳扬 王顺吉 +1 位作者 周正康 唐加山 《计算机应用》 北大核心 2025年第2期655-661,共7页
针对当前隧道内异物检测存在人工巡检成本高、效率低等问题,提出一种基于改进YOLOv8n的隧道内异物检测算法。首先,提出融入坐标注意力(CA)机制的C2f_CA模块,通过将位置信息嵌入通道注意力,增强网络对图像在空间上的特征分布的关注,从而... 针对当前隧道内异物检测存在人工巡检成本高、效率低等问题,提出一种基于改进YOLOv8n的隧道内异物检测算法。首先,提出融入坐标注意力(CA)机制的C2f_CA模块,通过将位置信息嵌入通道注意力,增强网络对图像在空间上的特征分布的关注,从而增强网络的特征提取能力;其次,借鉴高分辨率网络的思想,提出新的特征融合模块HRNet_Fusion(High Resolution Net)将提取的不同分辨率特征图作为4个并行分支输入网络,并经过多次上、下采样和融合操作得到全面且准确的特征信息,从而显著提升在小目标检测和特征信息融合方面的性能;最后,引入WIoU(Wise-IoU)损失函数降低低质量样本对网络的不良梯度影响,进一步提高模型的检测精度。实验结果表明,在隧道异物数据集上,改进算法的平均精度均值(mAP@0.5)为79.9%,模型大小为6.0 MB,与YOLOv8n算法相比,mAP@0.5提升了6个百分点,模型大小减少了0.2 MB,模型参数量减少了0.379×10~6。 展开更多
关键词 目标检测 异物检测 YOLOv8n 坐标注意力机制 高分辨率网络 wiou损失函数
在线阅读 下载PDF
改进YOLOv8的实时轻量化鲁棒绿篱检测算法
7
作者 张佳承 韦锦 陈义时 《计算机工程》 北大核心 2025年第7期362-374,共13页
针对道路两侧绿篱修剪的目标检测过程中对算法实时性、轻量化的要求以及算法在实际检测中的精度和光照鲁棒性问题,提出一种基于YOLOv8n的算法MGW-YOLO,并给出一种新的C2f_ModuGhost+模块来替换主干网络中的C2f模块,其中设计的调制可变... 针对道路两侧绿篱修剪的目标检测过程中对算法实时性、轻量化的要求以及算法在实际检测中的精度和光照鲁棒性问题,提出一种基于YOLOv8n的算法MGW-YOLO,并给出一种新的C2f_ModuGhost+模块来替换主干网络中的C2f模块,其中设计的调制可变形卷积增加了偏移量特征通道数,以加速模型的推理,增强算法实时性。在颈部网络中引入分组空间卷积(GSConv)轻量级卷积技术和slim-neck设计范式,并通过融合标准卷积、深度可分离卷积和Shuffle模块的思想,降低模型的参数量,实现模型的轻量化。设计一种具有双重加权机制的Focal-WIoU损失函数,WIoU中的双层交叉注意力机制可有效降低多个绿篱相连和遮挡时的误检率,并且利用Focal Loss权重因子提升对特殊形状绿篱等难分类样本的检测精度。另外采用TRADES方法的对抗训练策略,在分类问题鲁棒性与精度之间进行有效权衡。实验结果表明,相比基线算法YOLOv8n,MGW-YOLO的mAP@0.5和mAP@0.5∶0.95分别提高了3.29和2.87百分点,在无人驾驶底盘上的实验结果表明,MGW-YOLO相较于原始算法的预处理时间、每帧平均推理时间和每帧后处理时间分别降低了0.7 ms、10.7 ms和0.7 ms,检测速度提升了15.7帧/s,适用于绿篱修剪机在道路两侧实时性作业的需求。 展开更多
关键词 YOLOv8算法 目标检测 C2f_ModuGhost+模块 分组空间卷积轻量级卷积 Focal-wiou损失函数 对抗训练
在线阅读 下载PDF
基于改进YOLOv8n的船舶设备拆装流程规范性评估方法
8
作者 张振东 管聪 +2 位作者 张泽辉 吴超 丁学文 《中国舰船研究》 北大核心 2025年第2期140-150,共11页
[目的]船舶机舱作业规范性是船舶安全管控的关键部分,因此船员实操考试将船舶设备拆装作为一个重要考核项。为提升船员实操考试的电子化和智能化水平,提出一种基于计算机视觉的船舶设备拆装流程规范性的自动化识别方法。[方法]首先,以YO... [目的]船舶机舱作业规范性是船舶安全管控的关键部分,因此船员实操考试将船舶设备拆装作为一个重要考核项。为提升船员实操考试的电子化和智能化水平,提出一种基于计算机视觉的船舶设备拆装流程规范性的自动化识别方法。[方法]首先,以YOLOv8n构建船舶设备检测模型的骨干网络,并引入高效通道注意力机制(SA),以提高模型特征提取能力与训练效率;然后,在颈部网络中引入重参数化泛化特征的金字塔网络(GFPN)融合结构,以提高模型的多尺度特征融合能力;最后,引入动态非单调聚焦机制损失函数(WIoU)来替换原CIoU损失函数,以提高模型精度。[结果]自建数据集的试验结果表明:与YOLOv8n相比,改进目标识别算法的平均精度均值提高了0.15,实时检测的每秒帧数提升了0.6,可以准确识别齿轮泵的拆装流程。[结论]该改进算法具有更强的识别能力,可以更好地应用于船舶设备拆装流程规范性的识别任务。 展开更多
关键词 船舶设备 拆除和安装 目标检测 注意力机制(SA) 泛化特征金字塔网络(GFPN) 动态非单调聚焦机制(wiou)损失函数
在线阅读 下载PDF
改进YOLOv5s算法的带钢表面缺陷检测 被引量:3
9
作者 王林琳 龚昭昭 梁泽启 《组合机床与自动化加工技术》 北大核心 2024年第12期181-186,共6页
针对带钢表面缺陷小目标检测精度低以及检测效率低等问题,提出了一种基于YOLOv5s的带钢表面缺陷检测算法。首先,增加一个大尺度预测层,通过更丰富的位置信息提高小目标缺陷的检测效果,减少漏检和误检的问题;其次,将Shuffle Netv2轻量化... 针对带钢表面缺陷小目标检测精度低以及检测效率低等问题,提出了一种基于YOLOv5s的带钢表面缺陷检测算法。首先,增加一个大尺度预测层,通过更丰富的位置信息提高小目标缺陷的检测效果,减少漏检和误检的问题;其次,将Shuffle Netv2轻量化骨干网络替换原来的CSPDarknet53网络结构,降低模型参数数量,加快模型推理速度;然后,在特征提取网络末端添加基于Transformer编码的C3TR模块以及在特征融合网络中添加CA注意力机制,增强网络对缺陷的特征提取能力;最后,引入WIoU损失函数来取代GIoU,提高回归精度。实验结果表明,改进后的YOLOv5s算法在武汉某钢厂采集的带钢表面缺陷数据集上平均准确率(mAP)达到92.2%,较原始YOLOv5s提高了4.7%,检测速度FPS达到了82,具有较高检测精度。并引入公开数据集进行泛化实验,结果均有显著提升,进一步满足了对带钢表面缺陷检测的需求。 展开更多
关键词 钢材表面缺陷 YOLOv5s Shuffle Netv2 C3TR模块 CA注意力机制 wiou损失函数
在线阅读 下载PDF
基于改进YOLOv8的道路病害视觉识别算法 被引量:3
10
作者 张强 杜海强 +1 位作者 赵伟康 崔冬 《现代电子技术》 北大核心 2024年第23期119-124,共6页
道路病害检测对于确保道路的安全性和可持续性至关重要,对城市和社会的发展具有积极作用。为提高目前道路病害检测模型的性能,文中提出一种基于改进YOLOv8的道路病害检测算法。设计一种新型高效的特征融合模块(DWS),提高模型获取特征信... 道路病害检测对于确保道路的安全性和可持续性至关重要,对城市和社会的发展具有积极作用。为提高目前道路病害检测模型的性能,文中提出一种基于改进YOLOv8的道路病害检测算法。设计一种新型高效的特征融合模块(DWS),提高模型获取特征信息和全局上下文信息的能力;提出将ECABlock、LeakyReLU激活函数与卷积相结合的新模块ELConv来提高深层网络对目标的定位能力;另外,使用Dynamic Head检测头替换原始YOLOv8的头部,结合尺度、空间和任务三种注意力机制提升模型头部表征能力;最后,采用WIoU损失函数代替原损失函数来改善边界框精确度和匹配度。相比基线模型,改进模型在road damage detection数据集和RDD2022_Japan数据集上都得到了有效的验证,表明改进模型满足当下道路病害检测的需求,展示了高灵活性、准确性和效率。 展开更多
关键词 道路病害检测 深度学习 YOLOv8 特征融合 激活函数 Dynamic Head wiou损失函数
在线阅读 下载PDF
改进YOLOv8的输电线路异物检测方法 被引量:9
11
作者 易磊 黄哲玮 易雅雯 《电子测量技术》 北大核心 2024年第15期125-134,共10页
针对无人机对输电线路异物检测准确度有限,模型计算复杂度高、计算速度有限的问题,提出一种改进YOLOv8的输电线路异物检测方法SC-YOLO。该方法引入StarNet以构造C2f_Star模块实现Neck网络轻量化,有效降低模型参数量与计算量,同时通过增... 针对无人机对输电线路异物检测准确度有限,模型计算复杂度高、计算速度有限的问题,提出一种改进YOLOv8的输电线路异物检测方法SC-YOLO。该方法引入StarNet以构造C2f_Star模块实现Neck网络轻量化,有效降低模型参数量与计算量,同时通过增加特征空间维度提升Neck部分特征提取能力;在骨干网络输出特征图后添加卷积注意力融合模块,提升骨干网络对输入特征图的初步特征提取能力,增强模型整体检测效果;将原检测头替换为动态检测头,提升模型对不同输入的动态调整能力与对关键信息的关注程度;使用WIoU作为边界框损失函数,EMA-Slide Loss作为分类损失函数,提升模型泛化能力与检测性能。实验结果表明,提出的SC-YOLO计算量较原始模型下降8.02%,mAP提升1.4个百分点,达到了95.2%的检测精度,在降低模型计算复杂度的同时实现了较高的检测准确率,具有高可行性与实用性。 展开更多
关键词 输电线异物检测 YOLOv8 StarNet 卷积注意力融合模块 动态检测头 wiou损失函数 EMA-Slide loss损失函数
在线阅读 下载PDF
PAW-YOLOv7:河道微小漂浮物检测算法 被引量:4
12
作者 栾庆磊 常昕昱 +3 位作者 吴叶 邓从龙 史艳琼 陈梓华 《光电工程》 CAS CSCD 北大核心 2024年第4期101-113,共13页
河道漂浮物检测对于船舶自动驾驶以及河道清理有着重大意义,但现有的方法在针对河道漂浮物目标尺寸小且互相遮挡、特征信息少时出现检测精度低等问题。为解决这些问题,本文基于YOLOv7,提出了一种改进模型PAWYOLOv7。首先,为了提高网络... 河道漂浮物检测对于船舶自动驾驶以及河道清理有着重大意义,但现有的方法在针对河道漂浮物目标尺寸小且互相遮挡、特征信息少时出现检测精度低等问题。为解决这些问题,本文基于YOLOv7,提出了一种改进模型PAWYOLOv7。首先,为了提高网络模型对小目标的特征表达能力,构建了小目标物体检测层,并将自注意力和卷积混合模块(ACmix)集成应用于新构建的小目标检测层;其次,为了减少复杂背景的干扰,采用全维动态卷积(ODConv)代替颈部的卷积模块,使网络具有捕获全局上下文信息能力;最后,将PConv(partial convolution)模块融入主干网络,替换部分标准卷积,同时采用WIoU(Wise-IoU)损失函数取代CIoU,实现网络模型计算量的降低,提高网络检测速度,同时增加对低质量锚框的聚焦能力,加快模型收敛速度。实验结果表明,PAW-YOLOv7算法在本文利用数据扩展技术改进的FloW-Img数据集上的检测精度达到89.7%,较原YOLOv7提升了9.8%,且检测速度达到54帧/秒(FPS),在自建的稀疏漂浮物数据集上的检测精度比YOLOv7提高了3.7%,能快速准确地检测河道微小漂浮物,同时也具有较好的实时检测性能。 展开更多
关键词 YOLOv7 漂浮物检测 混合卷积自注意力机制 全维动态卷积 Wise-IoU损失函数
在线阅读 下载PDF
基于改进YOLOv8的水下目标检测算法 被引量:1
13
作者 李大海 李冰涛 王振东 《计算机应用》 CSCD 北大核心 2024年第11期3610-3616,共7页
由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强... 由于水下生物的特性,水下图像中存在较多难以检测的小目标,且目标之间经常相互遮挡,而水下环境中的光线吸收和散射也会造成水下图像的颜色偏移和模糊。针对上述问题,提出水下目标检测算法WCA-YOLOv8。首先,设计特征融合模块(FFM),增强对空间维度信息的关注,提升对模糊和颜色偏移目标的识别能力;其次,加入FCA(FReLU Coordinate Attention)模块,增强对相互重叠、遮挡水下目标的特征提取能力;再次,为了提高模型对水下小目标的检测性能,将完整交并比(CIoU)损失函数替换为WIoU v3(Wise-IoU version 3)损失函数;最后,设计下采样增强模块(DEM),使特征提取过程中保存的上下文信息更完整,改善水下目标检测的性能。RUOD和URPC数据集上的实验结果表明,WCA-YOLOv8的检测平均精度均值(mAP0.5)分别为75.8%和88.6%,检测速度分别为60 frame/s和57 frame/s。与其他前沿的水下物体检测算法相比,WCA-YOLOv8不仅能够获得更高的检测准确性,还可达到更快的检测速度。 展开更多
关键词 YOLOv8 水下目标检测 特征融合 wiou v3损失函数
在线阅读 下载PDF
基于YOLOv5s模型的边界框回归损失函数研究 被引量:16
14
作者 董恒祥 潘江如 +2 位作者 董芙楠 赵晴 郭鸿鑫 《现代电子技术》 北大核心 2024年第3期179-186,共8页
针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率... 针对车辆检测中边界框回归损失函数与检测目标尺度不匹配导致的误检、漏检以及精度较低等问题,基于YOLOv5s模型对4种有代表性的边界框回归损失函数进行对比实验,并在UA-DETRA、VisDrone2019、KITTI数据集上进行验证,利用漏检率、误检率、准确率、召回率、mAP@0.5、迭代过程的边界框损失值以及目标检测结果对其适用场景进行分析研究。结果显示:CIoU整体性能最差;SIoU在KITTI数据集上整体性能最优,准确率最高,达到了94.5%,漏检率降到了1.2%,适用于中尺度目标检测任务;Focal-EIoU在VisDrone2019数据集中各项指标远优于其他损失函数,召回率和mAP@0.5指标相较于CIoU分别提高了1.6%和1.8%,误检率降低了6.9%,且迭代过程损失值远低于其他损失函数,适用于小尺度目标检测任务;WIoU在UA-DETRA数据集整体性能最优,漏检率、召回率以及mAP@0.5指标优于其他损失函数,适用于大尺度目标检测任务。此研究为目标检测任务的边界框回归损失函数的选择提供了重要的基础。 展开更多
关键词 车辆检测 边界框回归损失函数 目标尺度 YOLOv5s CIoU SIoU Focal-EIoU wiou
在线阅读 下载PDF
改进YOLOv5的PDC钻头复合片缺损识别 被引量:4
15
作者 代啟亮 熊凌 +1 位作者 陈琳国 李姝凡 《电子测量与仪器学报》 CSCD 北大核心 2023年第8期164-172,共9页
PDC钻头复合片的缺损情况是影响钻进效率的重要因素,检测PDC钻头复合片是否缺损是修复PDC钻头的前提。为了减少对PDC钻头复合片的误检,提升检测准确率,提出了一种基于改进YOLOv5的目标检测算法。该方法以YOLOv5网络为基础,融合Rep VGG... PDC钻头复合片的缺损情况是影响钻进效率的重要因素,检测PDC钻头复合片是否缺损是修复PDC钻头的前提。为了减少对PDC钻头复合片的误检,提升检测准确率,提出了一种基于改进YOLOv5的目标检测算法。该方法以YOLOv5网络为基础,融合Rep VGG重参数化模块增强网络的特征提取能力;在C3模块中引入坐标注意力机制,在通道注意力机制中嵌入位置信息,提升对缺损复合片的目标检测能力;将边界框回归损失函数改进为WIo U损失函数,制定合适的梯度增益分配策略。实验结果表明,改进后的网络的精确率提升2%,召回率提升0.9%,平均精度均值(mAP)提升了1.3%,达到了98%,能够实现对PDC钻头复合片的缺损识别。 展开更多
关键词 PDC钻头复合片 YOLOv5 RepVGG 坐标注意力机制 wiou损失函数
在线阅读 下载PDF
基于改进YOLOv5的机收蔗含杂率检测方法试验研究
16
作者 郑健林 黄世醒 +4 位作者 郑丁科 许行行 刘伟埼 陈硕 杨丹彤 《农机化研究》 2026年第2期217-224,共8页
切段式机收甘蔗含杂率的自动测量可以客观评估机收甘蔗到糖厂入榨前的质量。针对现有抽样称重估算杂质方式效率低且主观性强的问题,以及因田间环境较为复杂使得检测目标蔗段存在运动状态变换导致的模糊、光照强度变化和蔗叶遮挡等技术难... 切段式机收甘蔗含杂率的自动测量可以客观评估机收甘蔗到糖厂入榨前的质量。针对现有抽样称重估算杂质方式效率低且主观性强的问题,以及因田间环境较为复杂使得检测目标蔗段存在运动状态变换导致的模糊、光照强度变化和蔗叶遮挡等技术难点,提出了一种基于改进YOLOv5安装在切段式甘蔗机上的机收蔗含杂率检测的方法。首先,针对工业相机拍摄的蔗段目标为小目标的应用场景,增加小目标检测层,增强网络模型对其的专注;其次,将C3模块替换成C2f模块,提高网络模型对小物体、低对比度目标的检测速度和检测精度;最后,加入加权交并比WIoU(Weighted Intersection over Union)损失函数,提升预测框的回归精度,增强数据集训练效果。试验结果表明:基于改进YOLOv5的机收蔗含杂率检测模型,蔗段识别准确率达95.2%、mAP(mean Average Precision)值为62.5%,相较于原始YOLOv5模型分别提高了15.3、13.5个百分点,性能优于YOLOv7、YOLOv8等模型。在台架试验中,改进后模型检测的含杂率平均相对误差为19.58%,比改进前模型降低了38.12个百分点;含杂率平均值为7.31%,比人工测量的实际含杂率高出0.05个百分点。因此,此方法是一种实时性强、效率高、准确性高且能全量检测机收蔗含杂率的方法,能够为田间甘蔗收获作业质量提供技术支撑。 展开更多
关键词 机收蔗含杂率 蔗段检测 YOLOv5 小目标检测层 Cf2模块 wiou损失函数
在线阅读 下载PDF
改进YOLOv8的城市车辆目标检测算法
17
作者 许德刚 王双臣 +1 位作者 尹柯栋 王再庆 《计算机工程》 2025年第11期377-391,共15页
为了解决城市车辆目标检测算法中存在检测效果差、误检漏检率高、泛化能力弱的问题,提出一种改进YOLOv8的城市车辆目标检测算法。首先,在主干网络尾部融入高效多尺度注意力(EMA)机制,有助于模型更好地捕捉目标车辆的细节特征,结合160... 为了解决城市车辆目标检测算法中存在检测效果差、误检漏检率高、泛化能力弱的问题,提出一种改进YOLOv8的城市车辆目标检测算法。首先,在主干网络尾部融入高效多尺度注意力(EMA)机制,有助于模型更好地捕捉目标车辆的细节特征,结合160×160像素尺寸的小目标检测层来加强对小目标的检测能力,通过维度交互进一步聚合像素级特征,增强对目标车辆的挖掘能力。其次,为轻量化网络设计了一种多尺度轻量化卷积(MLConv)模块,并基于MLConv重构了C2f模块,提高模型的特征提取能力。最后,为抑制低质量图像产生的有害梯度,采用WIoU损失函数替代完全交并比(CIoU)损失函数,优化网络的边界框损失,提升模型的收敛速度和回归精度。在Streets车辆数据集上进行验证,结果表明,改进算法的mAP@0.5、mAP@0.5∶0.95和召回率相较于基准模型YOLOv8n分别提升了1.9、1.4和2.4百分点。在国内车辆数据集和VisDrone2019小目标数据集上进行验证,改进算法的各项性能指标都有不同程度的提升,充分证明了改进算法具有良好的泛化性和鲁棒性。与其他主流算法相比,改进算法同样表现出了更高的准确率和召回率,表明该算法对于城市车辆目标检测具有更好的性能。 展开更多
关键词 车辆目标检测 YOLOv8n模型 注意力机制 轻量化 加权交并比损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部