随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数...随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。展开更多
随着基于位置服务(Location Based Services,LBS)的发展与智能移动设备的普及,室内定位算法与系统受到了广泛研究与关注。为提高室内定位精度、增强系统鲁棒性,提出了基于多边限定的fingerprint定位方法。基于Wi-Fi RSSI(Received Signa...随着基于位置服务(Location Based Services,LBS)的发展与智能移动设备的普及,室内定位算法与系统受到了广泛研究与关注。为提高室内定位精度、增强系统鲁棒性,提出了基于多边限定的fingerprint定位方法。基于Wi-Fi RSSI(Received Signal Strength Indication)信号处理建立离线fingerprint数据库;通过对拟合距离-RSSI函数分析,提出了多边限定的方法确定一个最佳参考点(Reference Point,RP)集合,缩小在线定位阶段的搜索范围。在此基础上,再利用fingerprint定位方法进行定位。此外,实现了基于提出方法的室内定位系统原型用于算法性能评估。通过大量真实场景实验分析、验证了相较于传统fingerprint方法,基于多边限定的fingerprint定位方法能有效提高室内定位精度,增强系统鲁棒性。展开更多
文摘随着智能家居应用的不断深化,基于Wi-Fi信号的室内定位技术也受到了广泛关注。在实际应用中,大多数室内定位算法采集得到的训练数据和测试数据通常并非来自于同一理想环境,各种环境条件变化以及信号漂移导致采集得到的训练数据和测试数据间的概率分布不同。传统定位模型在面对不同分布的训练数据和测试数据时无法保证具有良好的定位精度,常出现算法定位精度大幅降低,甚至算法不可用等问题。面对这一难点,迁移学习中的域适应方法作为一种可以有效解决训练样本和测试样本概率分布不一致的学习问题被广泛应用于室内定位领域。文中结合域适应学习和机器学习算法,提出了一种基于特征迁移的室内定位算法(Transfer Learning Location AlgorithmBased on Global and Local Metrics Adaptation,TL-GLMA)。TL-GLMA在定位阶段通过特征迁移方式将两域原始数据映射至高维空间,从而在最小化两域数据的分布差异的同时保留两域数据内部的局部几何属性,并利用映射后的独立同分布数据训练分类器,从而实现目标定位。实验结果表明,TL-GLMA能够有效减少环境变化带来的干扰,提升定位精度。
文摘随着基于位置服务(Location Based Services,LBS)的发展与智能移动设备的普及,室内定位算法与系统受到了广泛研究与关注。为提高室内定位精度、增强系统鲁棒性,提出了基于多边限定的fingerprint定位方法。基于Wi-Fi RSSI(Received Signal Strength Indication)信号处理建立离线fingerprint数据库;通过对拟合距离-RSSI函数分析,提出了多边限定的方法确定一个最佳参考点(Reference Point,RP)集合,缩小在线定位阶段的搜索范围。在此基础上,再利用fingerprint定位方法进行定位。此外,实现了基于提出方法的室内定位系统原型用于算法性能评估。通过大量真实场景实验分析、验证了相较于传统fingerprint方法,基于多边限定的fingerprint定位方法能有效提高室内定位精度,增强系统鲁棒性。