Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of ...Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed.展开更多
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el...By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.展开更多
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan...The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints.展开更多
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previo...The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.展开更多
The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in t...The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in the fusion zone after 100 h of exposure.During long-term thermal exposure,the size of the fine M_(6)C carbides increased.The eutectic M_(6)C-γcarbides in the as-welded fusion zone transformed into spherical M_(6)C carbides as the exposure time extends to 10000 h.Additionally,the spherical M_(6)C particles exhibit size coarsening with increasing exposure time.The tensile properties of the welded joints are not adversely affected by the evolution of eutectic M_(6)C-γcarbides and the coarsening of M_(6)C carbides.展开更多
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t...The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.展开更多
Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of ...Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.展开更多
In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to ...In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.展开更多
This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It ...This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod(CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel,Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile- shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.展开更多
The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don...The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.展开更多
Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW result...Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ). Under water friction stir welding(UWFSW) is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.展开更多
Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing ...Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy(SEM),which have supported the experimental findings.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation ...Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.展开更多
This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel ...This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel and copper.Sound welds between stainless steel and copper were obtained,and the interfacial morphology was wavy,regardless of the position of the materials.The weldability of dissimilar pairs was found to be more dependent on the relationship between the physical properties of the base materials than on the absolute value of the material property.When there is a significant difference in thermal conductivity between the flyer and the base plate,together with a material with a low melting temperature,the weldability of the pair is often poor.The relative position of the plates affects the interfacial microstructure even when similar morphologies are found.For the metallic pairs studied,the wave size was bigger for the configuration in which the ratio between the density of the flyer and the density of the base plate is smaller.The same phenomenon was observed for the impedance:bigger waves were found for a smaller ratio between the impedance of the flyer and the impedance of the base plate.展开更多
During high power disk laser welding, the high-speed photography was used to measure the dynamic images of the laser-induced plume at different laser welding speeds. Various plume features (area, height and brightnes...During high power disk laser welding, the high-speed photography was used to measure the dynamic images of the laser-induced plume at different laser welding speeds. Various plume features (area, height and brightness) were extracted from the images by the color space clustering algorithm. Combined with observation on the surface and the cross sections of welding samples, the effect of welding speed on welding stability was analyzed. From the experimental results, it was found that these features of plume could reflect the welding state. Thus changes of the plume features corresponded to different welding speeds, which was helpful for monitoring the laser welding stability.展开更多
This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the ...This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the joints.The results show that the water-cooling medium exhibits a significant heat absorption capacity in the AA2024-T3/AA7075-T6 welded joint.Nugget features such as stir zone width,circular imprints,average grain sizes,and angular inter-material hooking are reduced by the watercooling effect in the joints.Narrower whitish(intercalated structures)bands are formed in the underwater joints while Mg2Si and Al2CuMg precipitates are formed in the ambient and the underwater welded joints respectively.An increase in tool rotational speed(600e1400 rpm)and plunge depth(0.1 e0.5 mm)increases the tensile-shear force of the welded AA2024-T3/AA7075-T6 joints in both the ambient and underwater environments.The maximum tensile-shear forces of 5900 N and 6700 N were obtained in the ambient and the underwater welds respectively.展开更多
Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and align...Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.展开更多
By elastic-plastic finite deformation finite element analysis (FEA), the conservation of J-integral is investigated in detail for a welded joint with an overmatchingweld in plane stress case. It is indicated that J-in...By elastic-plastic finite deformation finite element analysis (FEA), the conservation of J-integral is investigated in detail for a welded joint with an overmatchingweld in plane stress case. It is indicated that J-integral is path dependent under various conditions at least in the cases studied in this paper. Meanwhile, the above conclusions are verified by the hybrid method results in which combined Moire interferometry with FEA.展开更多
文摘Cruciform joints in ships are prone to fatigue damage and the determination of type of weld plays a significant role in thefatigue design of the joint. In this paper, the effect of weld geometry on fatigue failure of load carrying cruciform joints inships is investigated using Effective Notch Stress (ENS) approach. A fictitious notch of 1 mm radius is introduced at theweld root and toe and fatigue stress is evaluated. The effect of weld leg length (l) and weld penetration depth (p) on ENS atweld root and toe are determined. The critical weld leg length (lcr) at which fatigue failure transitions from weld root toweld toe is investigated. An approximation formula for determination of the critical weld leg length considering weldpenetration depth (p) is proposed.
基金the National Natural Science Foundation of China(Grant Nos.12002037 and 12141201).
文摘By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.
基金financially supported by Ministry of Science and Higher Education of the Russian Federation(Grant No.FENU-2023-0013)。
文摘The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints.
基金the financial support of the FUNCOAT project(Development and design of novel multifunctional PEO COATings,H2020-RISE-2019-2024,No.823942)the I2B funding in frame MUFfin projectACTICOAT project in frame of Era。
文摘The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.
基金supported by the Technology Star of Shanghai Institute of Applied Physics,Chinese Academy of Sciences(No.E2551130)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.E2292202).
文摘The evolution of the microstructure and tensile rupture mechanism of laser welds in UNS N10003 alloy exposed to 700℃are investigated.Fine M_(6)C carbides precipitate around the primary eutectic M_(6)C-γcarbides in the fusion zone after 100 h of exposure.During long-term thermal exposure,the size of the fine M_(6)C carbides increased.The eutectic M_(6)C-γcarbides in the as-welded fusion zone transformed into spherical M_(6)C carbides as the exposure time extends to 10000 h.Additionally,the spherical M_(6)C particles exhibit size coarsening with increasing exposure time.The tensile properties of the welded joints are not adversely affected by the evolution of eutectic M_(6)C-γcarbides and the coarsening of M_(6)C carbides.
基金supported by the China National Railway Group Corporation Science and Technology Research and Development Program(J2022G009)Dr.Jingjing Li received no grant support.
文摘The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production.
基金supported by the National Natural Science Foundation of China(U23A20666)the China National Railway Group Corporation Science and Technology Research and Development Program(N2023G083).
文摘Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.
文摘In marine application,marine grade steel is generally used for haul and superstructures.However,aluminum has also become a good choice due to its lightweight qualities,while rusting of aluminum is minimal compared to steel.In this paper a study on friction stir welding of aluminum alloys was presented.The present investigation deals with the effects of different friction stir welding tool geometries on mechanical strength and the microstructure properties of aluminum alloy welds.Three distinct tool geometries with different types of shoulder and tool probe profiles were used in the investigation according to the design matrix.The effects of each tool shoulder and probe geometry on the weld was evaluated.It was also observed that the friction stir weld tool geometry has a significant effect on the weldment reinforcement,microhardness,and weld strength.
文摘This paper describes results of seam welding of relatively high temperature melting materials, AISI 304, C-Mn steels, Ni-based alloys, CP Cu, CP Ni, Ti6Al4V and relatively low temperature melting material, AA6061. It describes the seam welding of multi-layered similar and dissimilar metallic sheets. The method described and involved advancing a rotating non-consumable rod(CP Mo or AISI 304) toward the upper sheet of a metallic stack clamped under pressure. As soon as the distal end of the rod touched the top portion of the upper metallic sheet, an axial force was applied. After an initial dwell time, the metallic stack moved horizontally relative to the stationery non-consumable rod by a desired length, thereby forming a metallurgical bond between the metallic sheets. Multi-track and multi-metal seam welds of high temperature metallic sheets, AISI 304, C-Mn steel,Nickel-based alloys, Cp Cu, Ti6Al4V and low temperature metallic sheets, AA6061 were obtained. Optical and scanning electron microscopy examination and 180 degree U-bend test indicated that defect free seam welds could be obtained with this method. Tensile- shear testing showed that the seam welds of AISI 304, C-Mn steel, Nickel-based alloy were stronger than the starting base metal counterparts while AA6061 was weaker due to softening. The metallurgical bonding at the interface between the metallic sheets was attributed to localized stick and slip at the interface, dynamic recrystallization and diffusion. The method developed can be used as a means of welding, cladding and additive manufacturing.
文摘The R F first order second moment method will produce more error for calculating the reliability of welded engineering pipe structures when the failure function is seriously nonlinear and the random variables don′t serve as normal distribution. In order to increase the computing accuracy of reliability, an improved FOSM method is used for calculating the failure probability of welded pipes with flaws in this paper. Because of solving the problems of the linear expansion of failure function at the failure point and constructing equivalent normal variables, the new algorithm can greatly improve the calculating accuracy of probability of the welded pipes with cracks. The examples show that this method is simple, efficient and accurate for reliability safety assessment of the welded pipes with cracks. It can save more time than the Monte Carlo method does, so that the improved FOSM method is recommended for engineering reliability safety assessment of the welded pipes with flaws.
基金the financial support of the Directorate of Extramural Research & Intellectual Property Rights (ER&IPR)Defense Research Development Organization (DRDO)New Delhi through a R&D project no. DRDO-ERIPER/ERIP/ER/0903821/M/01/1404 to carry out this investigation
文摘Friction stir welding(FSW) is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However,the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone(TMAZ) and heat affected zone(HAZ). Under water friction stir welding(UWFSW) is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.? 2016 China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.
文摘Multi-pass TIG welding was conducted on plates(15×300×180 mm^(3))of aluminum alloy Al-5083 that usually serves as the component material in structural applications such as cryogenics and chemical processing industries.Porosity formation and solidification cracking are the most common defects when TIG welding Al-5083 alloy,which is sensitive to the welding heat input.In the experiment,the heat input was varied from 0.89 kJ/mm to 5 kJ/mm designed by the combination of welding torch travel speed and welding current.Tensile,micro-Vicker hardness and Charpy impact tests were executed to witness the impetus response of heat input on the mechanical properties of the joints.Radiographic inspection was performed to assess the joint’s quality and welding defects.The results show that all the specimens displayed inferior mechanical properties as compared to the base alloy.It was established that porosity was progressively abridged by the increase of heat input.The results also clinched that the use of medium heat input(1-2 kJ/mm)offered the best mechanical properties by eradicating welding defects,in which only about 18.26% of strength was lost.The yield strength of all the welded specimens remained unaffected indica ted no influence of heat input.Partially melted zone(PMZ)width also affected by heat input,which became widened with the increase of heat input.The grain size of PMZ was found to be coarser than the respective grain size in the fusion zone.Charpy impact testing revealed that the absorbed energy by low heat input specimen(welded at high speed)was greater than that of high heat input(welded at low speed)because of low porosity and the formation of equiaxed grains which induce better impact toughness.Cryogenic(-196℃)impact testing was also performed and the results corroborate that impact properties under the cryogenic environment revealed no appreciable change after welding at designated heat input.Finally,Macro and micro fractured surfaces of tensile and impact specimens were analyzed using Stereo and Scanning Electron Microscopy(SEM),which have supported the experimental findings.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
基金Project supported by the National Natural Science Foundation of China(Grant Nos50375053 and 50575077)
文摘Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.
基金sponsored by FEDER funds through the program COMPETE-Programa Operacional Factores de Competitividadeby national funds through FCT-Funda??o para a Ciência e a Tecnologia,under the project UIDB/00285/2020。
文摘This paper investigates the effects of the physical properties on the microstructure and weldability of explosive welding by joining two metals with a significant contrast in thermophysical properties:stainless steel and copper.Sound welds between stainless steel and copper were obtained,and the interfacial morphology was wavy,regardless of the position of the materials.The weldability of dissimilar pairs was found to be more dependent on the relationship between the physical properties of the base materials than on the absolute value of the material property.When there is a significant difference in thermal conductivity between the flyer and the base plate,together with a material with a low melting temperature,the weldability of the pair is often poor.The relative position of the plates affects the interfacial microstructure even when similar morphologies are found.For the metallic pairs studied,the wave size was bigger for the configuration in which the ratio between the density of the flyer and the density of the base plate is smaller.The same phenomenon was observed for the impedance:bigger waves were found for a smaller ratio between the impedance of the flyer and the impedance of the base plate.
基金supported by National Natural Science Foundation of China(No.51175095)the Guangdong Provincial Natural Science Foundation of China(Nos.10251009001000001,9151009001000020)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20104420110001)
文摘During high power disk laser welding, the high-speed photography was used to measure the dynamic images of the laser-induced plume at different laser welding speeds. Various plume features (area, height and brightness) were extracted from the images by the color space clustering algorithm. Combined with observation on the surface and the cross sections of welding samples, the effect of welding speed on welding stability was analyzed. From the experimental results, it was found that these features of plume could reflect the welding state. Thus changes of the plume features corresponded to different welding speeds, which was helpful for monitoring the laser welding stability.
基金Scientific Research Fund of Hunan Provincial Education Department(No.15C1240)Innovation platform open fund Project(No.16K080).
文摘This paper studies the friction stir spot welding of AA2024-T3/AA7075-T6 Al alloys in the ambient and underwater environments by clarifying the nugget features,microstructure,fracture and mechanical properties of the joints.The results show that the water-cooling medium exhibits a significant heat absorption capacity in the AA2024-T3/AA7075-T6 welded joint.Nugget features such as stir zone width,circular imprints,average grain sizes,and angular inter-material hooking are reduced by the watercooling effect in the joints.Narrower whitish(intercalated structures)bands are formed in the underwater joints while Mg2Si and Al2CuMg precipitates are formed in the ambient and the underwater welded joints respectively.An increase in tool rotational speed(600e1400 rpm)and plunge depth(0.1 e0.5 mm)increases the tensile-shear force of the welded AA2024-T3/AA7075-T6 joints in both the ambient and underwater environments.The maximum tensile-shear forces of 5900 N and 6700 N were obtained in the ambient and the underwater welds respectively.
文摘Welding sequence has a significant effect on distortion pattern of large orthogonally stiffened panels normally used in ships and offshore structures. These deformations adversely affect the subsequent fitup and alignment of the adjacent panels. It may also result in loss of structural integrity. These panels primarily suffer from angular and buckling distortions. The extent of distortion depends on several parameters such as welding speed, plate thickness, welding current, voltage, restraints applied to the job while welding, thermal history as well as sequence of welding. Numerical modeling of welding and experimental validation of the FE model has been carried out for estimation of thermal history and resulting distortions. In the present work an FE model has been developed for studying the effect of welding sequence on the distortion pattern and its magnitude in fabrication of orthogonally stiffened plate panels.
文摘By elastic-plastic finite deformation finite element analysis (FEA), the conservation of J-integral is investigated in detail for a welded joint with an overmatchingweld in plane stress case. It is indicated that J-integral is path dependent under various conditions at least in the cases studied in this paper. Meanwhile, the above conclusions are verified by the hybrid method results in which combined Moire interferometry with FEA.