In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the...In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.展开更多
The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern ...The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern Kunlun Mountains, Qinghai Province, restrains to probe the relationship of the deposits to the regional tectonic evolution. This paper documents the fission track method used to determine the ages of gold ore deposits in eastern Kunlun Mountains and considers the implication for the origin of the deposits.Eastern Kunlun Mountains is the northern part of the Qinghai—Tibet Plateau and is of three deep\|seated fault belts in about EW extension. This work mainly includes three gold ore districts. All of them, in the north of Mid\|Kunlun fault belt, belong to northern part of eastern Kunlun Mountains. The Yanjingou district, with geographical coordinate 96°00’E and 36°10’N, is located 60 km north of Hongqigou district . Both of them are large, typical tectonoalteration gold deposits and were formed in similar geological setting. Hongshuihe ore district is located 50 km east of Yanjingou district and includes tectonoalteration and magmatic cryptoexplosive gold deposits. Outcroped strata are dominantly Jinshuikou Group metamorphic rocks of Lower Proterozoic erathem. The occurrence area of igneous rocks, especially granitoid, accounts for about 90% in first two districts and become less in Hongshuihe district. The gold deposits occur in NW\|striking fault belts. The Rb\|Sr isochron age and K\|Ar isotopic age of Moyite relevant to the gold mineralization are respectively 228 25Ma and 207 1Ma. Rb\|Sr dating of diorite porphyrite is 209 09Ma. Sericite selected from Yanjingou orebody has 252 9Ma K\|Ar age. The ore in Hongqigou district has 197Ma K\|Ar age and 210Ma model age of Pb isotope of galena.展开更多
The Kohistan Terrane in N. Pakistan straddles the suture zone between the collided Indian and Eurasian plates in the NW Himalayas of N. Pakistan. Initiated as an intra\|oceanic island\|arc crust in Neotethys, the terr...The Kohistan Terrane in N. Pakistan straddles the suture zone between the collided Indian and Eurasian plates in the NW Himalayas of N. Pakistan. Initiated as an intra\|oceanic island\|arc crust in Neotethys, the terrane accreted with the southern margin of the Karakoram Plate in the Late Cretaceous (about 90Ma). Continued subduction at its southern margin resulted in Andean\|type magmatism and tectonics, until collision with the Indian Plat in the Early Eocene.Whereas much of the central and eastern Kohistan expose Cretaceous volcanic and sedimentary rocks of intra\|oceanic island arc setting, the western Kohistan in Swat, Dir, Chitral and upper Ghizer valleys preserves remnants of the Late Paleocene—Early Eocene volcanism and sedimentation of Andean\|type setting. These volcano\|sedimentary lithologies in western Kohistan are geographically divisible into two, separated by the Lowari Pluton; (1) Dir\|Swat Belt, (2) Drosh\|Shamran Belt. Late Paleocene\|Early Eocene siliceous volcanics termed Utror Volcanics and Shamran Volcanics are common in the two belts and so are the plutons intrusive into these volcanics (Late Stage\|II of the Kohistan Batholith). The difference is in the sedimentary successions presented in the two belts. Whereas in the Dir\|Swat belt, the sedimentary succession comprises Baraul Banda Slate Formation, deposited in deep\|water fore\|arc setting and contemporaneous in age with that of the nearby Utror Volcanic Formation (about 55~60Ma), the sediments in the Drosh\|Shamran belt are distinctly red beds of fluvial origin (the Purit Formation) those overlie unconformably on top of the Shamran Volcanics and their equivalents.展开更多
The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large p...The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large production of base\|metal sulphide deposits. The worldwide famous super\|large Jinding Pb\|Zn deposit is located in the middle of the basin. The evolution history of the Lanping basin since Mesozoic can be divided into six stages, i.e., ①active continental marginal basin (T 1—T 2); ②back\|arc rift basin (T 3—J 1); ③intracontinental depressive basin (J 2—J 3); ④foreland basin (K); ⑤strike\|slipping and mutual thrusting (E 1—E 3); and ⑥strike\|slipping and pull\|apart basin (N 1\|present). Three main types of Ag\|Cu polymetal deposits are recognized in the basin. Deposits of sedimentary exhalation\|hydrothermal reworking origin (type Ⅰ) are hosted chiefly in limestones, dolomitic limestones, and siliceous rocks of the Upper Triassic Sanhedong Formation (T 3 s ) in Sanshan area. Deposits formed through normal chemical sedimentation in closed to semi\|closed environments (type Ⅱ; e.g., Jinman and Baiyangchang) during the depressive and foreland basin stages occur in various horizons of Jurassic and Cretaceous ages. Hydrothermal reworking on deposits of this type during the Himalayan period are locally pronounced, especially in the west margin of the basin near the Lancangjiang thrust fault. The third deposit type in the basin (type Ⅲ; e.g., Baiyangping and Fulongchang) is the Ag\|bearing tetrahedrite vein deposits occurring almost in all Mesozoic—Cenozoic strata, especially in the Cretaceous. Ore minerals formed during synsedimentary periods of types Ⅰ and Ⅱ are relatively simple and dominated by chalcopyrite and bornite, though sphalerite, galena, pyrite, tetrahedrite and pyrite are also present. In the deposits of type Ⅲ as well as in the ores formed during the hydrothermal reworking period in deposits of type Ⅰ and Ⅱ, ore minerals are extremely complicated and characterized by predominant Ag\|bearing tetrahedrite and other complex sulfosalts of Cu\|Ni\|Co\|Fe\|As\|S and Cu\|Bi\|S series. The associated gangue minerals are mainly quartz, siderite, Fe\|dolomite, barite, and celestite.展开更多
The Kyzylalmasay gold-silver deposit is located within the Southwest spurs of the Chatkal ridge of the Beltau-Kurama volcanic-plutonic belt.The deposit is related to typical sub-aerial margin-continental structures of...The Kyzylalmasay gold-silver deposit is located within the Southwest spurs of the Chatkal ridge of the Beltau-Kurama volcanic-plutonic belt.The deposit is related to typical sub-aerial margin-continental structures of tectonic-magmatic activation,in which there is a wide development of volcanogenic Au-Ag deposits.The deposits are conjugate with a basalt-andesite-dacite volcanic fractionation sequence. Ore-forming processes are related to展开更多
The study area is part of the Urumieh–Dokhtar volcanic arc that a large part of its surface is covered by extrusive Igneous rocks(tuff,intermediate lavas and ignimbrites sheets),plutonic igneous(diorite and granodior...The study area is part of the Urumieh–Dokhtar volcanic arc that a large part of its surface is covered by extrusive Igneous rocks(tuff,intermediate lavas and ignimbrites sheets),plutonic igneous(diorite and granodiorite)and semi-deep stones(dyke and sill).Studied samples are situated in calc-alkaline domain of magmatic series diagrams.Harker diagrams show the fractional crystallization of Clinopyroxene,amphibole,plagioclase,alkali feldspars and opaque minerals(ilmenite Titano-magnetite,ilmenite and rutile).In spider diagrams,light rare earth elements(LREE)are enriched compared to heavy rare earth elements(HREE),and HFS elements(Ti,Nb)show negative anomaly and LFS elements(Cs,K,Pb)show positive anomaly,showing that it is a distinct characteristic of subduction zones.Skarns of the area mainly are of exoskarns and are rich in plagioclase,microcline,amphibole,biotite and epidote.Skarn is enriched of iron,copper,molybdenum,vanadium,lead,zinc and silver.Deposits of barite in the area show characteristics of volcanic-sedimentary barites and are associated to ore-bearing hydrothermal solutions.Using satellite images and processing information,four areas with high mineral potential are identified in the area.展开更多
The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies,...The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies, such as layered intrusions (V\|Ti\|Fe formation), small\|sized mafic\|ultramafic bodies (stocks) and large\|scale basalt (Emeishan Basalt) are constituted of a complete melanocratic rock system.Most of Cu\|Ni\|PGE sulfide deposits are related to small\|sized ultramafic rock bodies. It is a perfect possibility for them to be an affinity of basic eruptive lava and for the neck facies. But in ① Panzhihua\|Center Yunnan Province, the Gaojiacun, also Jinbaoshan, as large stratiform basic\|ultrabasic complex used to be thought that is older one intruded to basement rocks in Precambrian. However, new evidences suggest it is similar with the small\|sized ultramafic rock bodies containing Cu\|Ni\|PGE, and also the both are affinity of the Emeishan Basalt; ② Miyi district, Cu\|Pt mineralization was discovered in the Xinjie bedded basic complex, and in where ophitic olivine\|pyroxenite\|peridotite facies are exactly Pt\|bearing layers; ③ Longzhoushan district, we have recently researched basic\|ultrabasic clusters which intruded into fracture zones, and Cu\|Ni\|Pt, Pd mineralization developed at the salbands.Generally, the basalt is poor in PGE and rich in Cu. It is suggested as the result of PGE dispersion\|concentration processing in the melanocratic rock system when rifting happened.展开更多
Eastern Tianshan, a cardinal part of Northern Xinjiang compound continental crustoblock, is located in the east of Tianshan Diwa region. By analysis of regional geological and geophysical data, and by using crustobody...Eastern Tianshan, a cardinal part of Northern Xinjiang compound continental crustoblock, is located in the east of Tianshan Diwa region. By analysis of regional geological and geophysical data, and by using crustobody theory and researching methods, this region can be divided into three sectors of different crustal structure. During Proterozoic to Eopaleozoic, the spreading and closing of Northern Tianshan Sea, on the foundation of disparate continental basements of each sectors, the transversal heterogeneity of tectonic movement and evolution resulted in the diversity of crustal structure and material formations. The metallogenic evolution indicated that different geotectonic evolution periods had not only different characteristics of mineralization commodity and mineral deposit types, but also the progressive mineralization feature. In Neopaleozoic, the closing of Northern Tianshan Sea from north to south and the difference of transmeridional tectonic deformation and magmation formed in the movement constituted the different metallogenic environment in shallow crust. Furthermore, it brought on the diverse Cu-Au-polymetal mineral deposit types and metallogenetic epoch from north to south and from west to east.展开更多
Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the ...Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas' thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil's sulfur in Devonian, which indicates obvious relationship between the sulfur's source of deposit and oil-gas' activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies' black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed's hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements' activation and transfer, and provides catalyzing condition to the transforming from SO42- to S2-. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst's caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150 ℃ ), the oil-gas is decomposed and anthraxolite comes into being.展开更多
Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in...Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in vitro and in vivo [1]. As an example,展开更多
基金Project(42277256)supported by the National Natural Science Foundation of ChinaProjects(HBKT-2021011,HBKT-2021014)supported by the Hunan Province Environmental Protection Research Program,ChinaProject(CDSKY-2023-05)supported by the Scientific Research of Project Hunan Provincial Urban Geological Survey and Monitoring Institute,China。
文摘In this study,Schwertmannite,Akaganéite and ammoniojarosite were biosynthesized by different bacteria and characterized.The results showed that bacteria are critical in mediating the mineral formation process:the morphology,crystallinity,grain size and specific surface area of each mineral varied upon different bacteria and culturing conditions.In addition,the formed minerals’elemental composition and group disparity lead to different morphology,crystallinity and subsequent adsorption performance.In particular,adsorption difference existed in iron minerals biosynthesized by different bacteria.The maximal adsorption capacities of Akaganéite,Schwertmannite and ammoniojarosite were 26.6 mg/g,17.5 mg/g and 3.90 mg/g respectively.Cr(VI)adsorption on iron-minerals involves hydrogen bonding,electrostatic interaction,and ligand exchange.The adsorption only occurred on the surface of ammoniojarosite,while for Akaganéite and Schwertmannite,the tunnel structure greatly facilitated the adsorption process and improved adsorption capacity.Thus,the molecular structure is the primary determining factor for adsorption performance.Collectively,the results can provide useful information in selecting suitable bacteria for synthesizing heavy-metal scavenging minerals according to different environmental conditions.
文摘The age of mineralization in a mining area is a primary factor in various researches related to ore\|forming process. It is that the uncertainty of mineralization ages of gold ore deposits in northern zone of eastern Kunlun Mountains, Qinghai Province, restrains to probe the relationship of the deposits to the regional tectonic evolution. This paper documents the fission track method used to determine the ages of gold ore deposits in eastern Kunlun Mountains and considers the implication for the origin of the deposits.Eastern Kunlun Mountains is the northern part of the Qinghai—Tibet Plateau and is of three deep\|seated fault belts in about EW extension. This work mainly includes three gold ore districts. All of them, in the north of Mid\|Kunlun fault belt, belong to northern part of eastern Kunlun Mountains. The Yanjingou district, with geographical coordinate 96°00’E and 36°10’N, is located 60 km north of Hongqigou district . Both of them are large, typical tectonoalteration gold deposits and were formed in similar geological setting. Hongshuihe ore district is located 50 km east of Yanjingou district and includes tectonoalteration and magmatic cryptoexplosive gold deposits. Outcroped strata are dominantly Jinshuikou Group metamorphic rocks of Lower Proterozoic erathem. The occurrence area of igneous rocks, especially granitoid, accounts for about 90% in first two districts and become less in Hongshuihe district. The gold deposits occur in NW\|striking fault belts. The Rb\|Sr isochron age and K\|Ar isotopic age of Moyite relevant to the gold mineralization are respectively 228 25Ma and 207 1Ma. Rb\|Sr dating of diorite porphyrite is 209 09Ma. Sericite selected from Yanjingou orebody has 252 9Ma K\|Ar age. The ore in Hongqigou district has 197Ma K\|Ar age and 210Ma model age of Pb isotope of galena.
文摘The Kohistan Terrane in N. Pakistan straddles the suture zone between the collided Indian and Eurasian plates in the NW Himalayas of N. Pakistan. Initiated as an intra\|oceanic island\|arc crust in Neotethys, the terrane accreted with the southern margin of the Karakoram Plate in the Late Cretaceous (about 90Ma). Continued subduction at its southern margin resulted in Andean\|type magmatism and tectonics, until collision with the Indian Plat in the Early Eocene.Whereas much of the central and eastern Kohistan expose Cretaceous volcanic and sedimentary rocks of intra\|oceanic island arc setting, the western Kohistan in Swat, Dir, Chitral and upper Ghizer valleys preserves remnants of the Late Paleocene—Early Eocene volcanism and sedimentation of Andean\|type setting. These volcano\|sedimentary lithologies in western Kohistan are geographically divisible into two, separated by the Lowari Pluton; (1) Dir\|Swat Belt, (2) Drosh\|Shamran Belt. Late Paleocene\|Early Eocene siliceous volcanics termed Utror Volcanics and Shamran Volcanics are common in the two belts and so are the plutons intrusive into these volcanics (Late Stage\|II of the Kohistan Batholith). The difference is in the sedimentary successions presented in the two belts. Whereas in the Dir\|Swat belt, the sedimentary succession comprises Baraul Banda Slate Formation, deposited in deep\|water fore\|arc setting and contemporaneous in age with that of the nearby Utror Volcanic Formation (about 55~60Ma), the sediments in the Drosh\|Shamran belt are distinctly red beds of fluvial origin (the Purit Formation) those overlie unconformably on top of the Shamran Volcanics and their equivalents.
文摘The Lanping Mesozoic—Cenozoic sedimentary basin, situated in the Middle section of the “Sanjiang" (Nujiang—Lancangjiang—Jinshajiang) area in the east margin of the Tibet plateau, is well known for its large production of base\|metal sulphide deposits. The worldwide famous super\|large Jinding Pb\|Zn deposit is located in the middle of the basin. The evolution history of the Lanping basin since Mesozoic can be divided into six stages, i.e., ①active continental marginal basin (T 1—T 2); ②back\|arc rift basin (T 3—J 1); ③intracontinental depressive basin (J 2—J 3); ④foreland basin (K); ⑤strike\|slipping and mutual thrusting (E 1—E 3); and ⑥strike\|slipping and pull\|apart basin (N 1\|present). Three main types of Ag\|Cu polymetal deposits are recognized in the basin. Deposits of sedimentary exhalation\|hydrothermal reworking origin (type Ⅰ) are hosted chiefly in limestones, dolomitic limestones, and siliceous rocks of the Upper Triassic Sanhedong Formation (T 3 s ) in Sanshan area. Deposits formed through normal chemical sedimentation in closed to semi\|closed environments (type Ⅱ; e.g., Jinman and Baiyangchang) during the depressive and foreland basin stages occur in various horizons of Jurassic and Cretaceous ages. Hydrothermal reworking on deposits of this type during the Himalayan period are locally pronounced, especially in the west margin of the basin near the Lancangjiang thrust fault. The third deposit type in the basin (type Ⅲ; e.g., Baiyangping and Fulongchang) is the Ag\|bearing tetrahedrite vein deposits occurring almost in all Mesozoic—Cenozoic strata, especially in the Cretaceous. Ore minerals formed during synsedimentary periods of types Ⅰ and Ⅱ are relatively simple and dominated by chalcopyrite and bornite, though sphalerite, galena, pyrite, tetrahedrite and pyrite are also present. In the deposits of type Ⅲ as well as in the ores formed during the hydrothermal reworking period in deposits of type Ⅰ and Ⅱ, ore minerals are extremely complicated and characterized by predominant Ag\|bearing tetrahedrite and other complex sulfosalts of Cu\|Ni\|Co\|Fe\|As\|S and Cu\|Bi\|S series. The associated gangue minerals are mainly quartz, siderite, Fe\|dolomite, barite, and celestite.
文摘The Kyzylalmasay gold-silver deposit is located within the Southwest spurs of the Chatkal ridge of the Beltau-Kurama volcanic-plutonic belt.The deposit is related to typical sub-aerial margin-continental structures of tectonic-magmatic activation,in which there is a wide development of volcanogenic Au-Ag deposits.The deposits are conjugate with a basalt-andesite-dacite volcanic fractionation sequence. Ore-forming processes are related to
文摘The study area is part of the Urumieh–Dokhtar volcanic arc that a large part of its surface is covered by extrusive Igneous rocks(tuff,intermediate lavas and ignimbrites sheets),plutonic igneous(diorite and granodiorite)and semi-deep stones(dyke and sill).Studied samples are situated in calc-alkaline domain of magmatic series diagrams.Harker diagrams show the fractional crystallization of Clinopyroxene,amphibole,plagioclase,alkali feldspars and opaque minerals(ilmenite Titano-magnetite,ilmenite and rutile).In spider diagrams,light rare earth elements(LREE)are enriched compared to heavy rare earth elements(HREE),and HFS elements(Ti,Nb)show negative anomaly and LFS elements(Cs,K,Pb)show positive anomaly,showing that it is a distinct characteristic of subduction zones.Skarns of the area mainly are of exoskarns and are rich in plagioclase,microcline,amphibole,biotite and epidote.Skarn is enriched of iron,copper,molybdenum,vanadium,lead,zinc and silver.Deposits of barite in the area show characteristics of volcanic-sedimentary barites and are associated to ore-bearing hydrothermal solutions.Using satellite images and processing information,four areas with high mineral potential are identified in the area.
文摘The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies, such as layered intrusions (V\|Ti\|Fe formation), small\|sized mafic\|ultramafic bodies (stocks) and large\|scale basalt (Emeishan Basalt) are constituted of a complete melanocratic rock system.Most of Cu\|Ni\|PGE sulfide deposits are related to small\|sized ultramafic rock bodies. It is a perfect possibility for them to be an affinity of basic eruptive lava and for the neck facies. But in ① Panzhihua\|Center Yunnan Province, the Gaojiacun, also Jinbaoshan, as large stratiform basic\|ultrabasic complex used to be thought that is older one intruded to basement rocks in Precambrian. However, new evidences suggest it is similar with the small\|sized ultramafic rock bodies containing Cu\|Ni\|PGE, and also the both are affinity of the Emeishan Basalt; ② Miyi district, Cu\|Pt mineralization was discovered in the Xinjie bedded basic complex, and in where ophitic olivine\|pyroxenite\|peridotite facies are exactly Pt\|bearing layers; ③ Longzhoushan district, we have recently researched basic\|ultrabasic clusters which intruded into fracture zones, and Cu\|Ni\|Pt, Pd mineralization developed at the salbands.Generally, the basalt is poor in PGE and rich in Cu. It is suggested as the result of PGE dispersion\|concentration processing in the melanocratic rock system when rifting happened.
文摘Eastern Tianshan, a cardinal part of Northern Xinjiang compound continental crustoblock, is located in the east of Tianshan Diwa region. By analysis of regional geological and geophysical data, and by using crustobody theory and researching methods, this region can be divided into three sectors of different crustal structure. During Proterozoic to Eopaleozoic, the spreading and closing of Northern Tianshan Sea, on the foundation of disparate continental basements of each sectors, the transversal heterogeneity of tectonic movement and evolution resulted in the diversity of crustal structure and material formations. The metallogenic evolution indicated that different geotectonic evolution periods had not only different characteristics of mineralization commodity and mineral deposit types, but also the progressive mineralization feature. In Neopaleozoic, the closing of Northern Tianshan Sea from north to south and the difference of transmeridional tectonic deformation and magmation formed in the movement constituted the different metallogenic environment in shallow crust. Furthermore, it brought on the diverse Cu-Au-polymetal mineral deposit types and metallogenetic epoch from north to south and from west to east.
文摘Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas' thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil's sulfur in Devonian, which indicates obvious relationship between the sulfur's source of deposit and oil-gas' activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies' black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed's hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements' activation and transfer, and provides catalyzing condition to the transforming from SO42- to S2-. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst's caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150 ℃ ), the oil-gas is decomposed and anthraxolite comes into being.
基金supported by the NIH (R01 AR52379 & R01 AR49286),U S Army Medical Research and NSBRI
文摘Introduction Mechanotransduction has demonstrated potentials for tissue adaptation in vivo and in vitro. It is well documented that ultrasound,as a mechanical signal,can produce a wide variety of biological effects in vitro and in vivo [1]. As an example,