期刊文献+
共找到2,858篇文章
< 1 2 143 >
每页显示 20 50 100
Using Data Mining to Find Patterns in Ant Colony Algorithm Solutions to the Travelling Salesman Problem
1
作者 阎世梁 王银玲 《现代电子技术》 2007年第5期117-119,共3页
Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by ... Travelling Salesman Problem(TSP) is a classical optimization problem and it is one of a class of NP-Problem.The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by an Ant Colony Algorithm(ACA) performing a searching operation and to develop a rule set searcher which approximates the ACA′s searcher.An attribute-oriented induction methodology was used to explore the relationship between an operations′ sequence and its attributes and a set of rules has been developed.At the end of this paper,the experimental results have shown that the proposed approach has good performance with respect to the quality of solution and the speed of computation. 展开更多
关键词 数据挖掘 数据管理系统 数据库 数据分析
在线阅读 下载PDF
Linear manifold clustering for high dimensional data based on line manifold searching and fusing 被引量:1
2
作者 黎刚果 王正志 +2 位作者 王晓敏 倪青山 强波 《Journal of Central South University》 SCIE EI CAS 2010年第5期1058-1069,共12页
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob... High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data. 展开更多
关键词 linear manifold subspace clustering line manifold data mining data fusing clustering algorithm
在线阅读 下载PDF
A new clustering algorithm for large datasets 被引量:1
3
作者 李清峰 彭文峰 《Journal of Central South University》 SCIE EI CAS 2011年第3期823-829,共7页
The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between c... The Circle algorithm was proposed for large datasets.The idea of the algorithm is to find a set of vertices that are close to each other and far from other vertices.This algorithm makes use of the connection between clustering aggregation and the problem of correlation clustering.The best deterministic approximation algorithm was provided for the variation of the correlation of clustering problem,and showed how sampling can be used to scale the algorithms for large datasets.An extensive empirical evaluation was given for the usefulness of the problem and the solutions.The results show that this method achieves more than 50% reduction in the running time without sacrificing the quality of the clustering. 展开更多
关键词 data mining Circle algorithm clustering categorical data clustering aggregation
在线阅读 下载PDF
基于OpenMP的遥感影像并行ISODATA聚类研究 被引量:11
4
作者 刘扬 王鹏 +4 位作者 杨瑞 左宪禹 张周威 吴晓洋 渠涧涛 《计算机工程》 CAS CSCD 北大核心 2016年第7期238-243,250,共7页
针对传统影像分类算法执行效率较低,无法满足海量高分辨率遥感数据实时处理需求的问题,对资源三号卫星专题产品中遥感影像的迭代自组织数据分析算法进行分析与研究,设计一种基于OpenMP的并行ISODATA聚类算法(PIsodata Omp)。采用OpenMP... 针对传统影像分类算法执行效率较低,无法满足海量高分辨率遥感数据实时处理需求的问题,对资源三号卫星专题产品中遥感影像的迭代自组织数据分析算法进行分析与研究,设计一种基于OpenMP的并行ISODATA聚类算法(PIsodata Omp)。采用OpenMP技术优化ISODATA算法中的样本点聚类、聚类样本中心标准差计算,实现基于共享内存的单机多核并行化处理。实验结果表明,PIsodata Omp算法能在保证分类精度不变的情况下,明显提高资源三号卫星影像数据的处理速度。 展开更多
关键词 并行聚类 迭代自组织数据分析算法 OpenMP技术 遥感影像分类 多核处理
在线阅读 下载PDF
Automatic fuzzy-DBSCAN algorithm for morphological and overlapping datasets 被引量:5
5
作者 YELGHI Aref KÖSE Cemal +1 位作者 YELGHI Asef SHAHKAR Amir 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1245-1253,共9页
Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clu... Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms. 展开更多
关键词 clustering density-based spatial clustering of applications with noise(DBSCAN) FUZZY OVERLAPPING data mining
在线阅读 下载PDF
结合Voronoi划分HMRF模型的模糊ISODATA图像分割 被引量:7
6
作者 赵泉华 李晓丽 +1 位作者 赵雪梅 李玉 《信号处理》 CSCD 北大核心 2016年第10期1233-1243,共11页
为了解决传统模糊聚类图像分割方法对噪声敏感及无法自动准确确定聚类数的问题,提出结合Voronoi划分HMRF模型的模糊ISODATA图像分割方法。利用Voronoi划分将图像域划分为若干子区域,以划分子区域为基本单元定义基于隐马尔科夫随机场(HM... 为了解决传统模糊聚类图像分割方法对噪声敏感及无法自动准确确定聚类数的问题,提出结合Voronoi划分HMRF模型的模糊ISODATA图像分割方法。利用Voronoi划分将图像域划分为若干子区域,以划分子区域为基本单元定义基于隐马尔科夫随机场(HMRF)模型的模糊聚类目标函数,以解决噪声敏感问题;通过迭代自组织数据分析技术算法(ISODATA)中聚类分裂、合并技术改变聚类数,以实现聚类数的自动确定。对模拟、合成图像和真实图像分割结果的定性、定量分析表明:提出算法不仅可以有效克服噪声和像素异常值对分割结果的影响,而且还能自动准确确定聚类数,实现自动变类图像分割。 展开更多
关键词 VORONOI划分 隐马尔科夫随机场(HMRF) 迭代自组织数据分析技术算法(ISOdata) 模糊聚类 图像分割
在线阅读 下载PDF
改进的自适应模糊ISODATA灰度图像分割算法 被引量:4
7
作者 康永辉 戴激光 王广哲 《计算机工程与应用》 CSCD 北大核心 2016年第17期198-202,214,共6页
传统模糊ISODATA(Fuzzy ISODATA,FISODATA)算法中,分裂-合并操作需人工选取阈值参数。而不适当的阈值往往使算法陷入局部极值,因而得到错误的类属数并最终影响图像分割结果。为此,在模糊集理论基础上提出一种改进的自适应FISODATA算法... 传统模糊ISODATA(Fuzzy ISODATA,FISODATA)算法中,分裂-合并操作需人工选取阈值参数。而不适当的阈值往往使算法陷入局部极值,因而得到错误的类属数并最终影响图像分割结果。为此,在模糊集理论基础上提出一种改进的自适应FISODATA算法。该算法设计了自适应分裂-合并操作,即在每次分裂-合并后,根据该次计算结果改变参数阈值,解决了人为选取参数带来的诸多问题。利用该算法对模拟图像和真实IKONOS图像进行分割实验,均能得到良好的分割结果。 展开更多
关键词 遥感图像分割 模糊聚类 模糊迭代自组织数据分析技术算法(ISOdata)
在线阅读 下载PDF
An air combat maneuver pattern extraction based on time series segmentation and clustering analysis
8
作者 Zhifei Xi Yingxin Kou +2 位作者 Zhanwu Li Yue Lv You Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期149-162,共14页
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me... Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy. 展开更多
关键词 Maneuver pattern extraction data mining Fuzzy segmentation Selective ensemble clustering
在线阅读 下载PDF
基于机器学习的煤系地层TBM掘进巷道围岩强度预测 被引量:2
9
作者 丁自伟 高成登 +6 位作者 景博宇 黄兴 刘滨 胡阳 桑昊旻 徐彬 秦立学 《西安科技大学学报》 北大核心 2025年第1期49-60,共12页
为研究全断面掘进机(TBM)掘进参数与煤系地层岩体力学参数之间的互馈关系,准确、实时预测巷道围岩强度特征,基于TBM掘进过程中的现场监测,通过岩-机互馈关系分析,确定模型的输入特征参数,并建立了对应的数据库;将梯度提升决策树(GBDT)... 为研究全断面掘进机(TBM)掘进参数与煤系地层岩体力学参数之间的互馈关系,准确、实时预测巷道围岩强度特征,基于TBM掘进过程中的现场监测,通过岩-机互馈关系分析,确定模型的输入特征参数,并建立了对应的数据库;将梯度提升决策树(GBDT)、随机森林(RF)、支持向量回归(SVR)3种机器学习算法作为基学习器,线性回归(LR)算法作为元学习器,提出了一种基于Stacking集成算法的预测模型,并对比分析了Stacking集成算法与单一机器学习算法模型的预测性能。结果表明:二值判别与箱线图可有效对原始数据进行预处理;模型的主要输入特征参数为刀盘推力F、刀盘扭矩T、贯入度FPI、刀盘转速RPM、刀盘振动加速度A;Stacking模型在测试集上的拟合优度可达0.976,而均方误差、平均绝对误差、平均绝对百分误差分别仅有0.031,0.148和0.092,与其他3种模型相比,其拟合优度最高,误差指标数值最小,集成模型具有更高的预测精度,能够有效地预测煤矿TBM掘进巷道围岩点荷载强度。研究验证了Stacking模型的准确性,可为煤矿TBM掘进参数控制和巷道支护参数调整提供科学的参考依据。 展开更多
关键词 煤矿全断面掘进机 TBM掘进参数 Stacking集成算法 数据预处理 围岩强度预测
在线阅读 下载PDF
基于Gossip协议的高效集群数据同步方案 被引量:1
10
作者 张宏海 崔斌豪 +3 位作者 李一鸣 田丰 贾永强 肖傲三 《北京航空航天大学学报》 北大核心 2025年第5期1629-1636,共8页
随着民航客票运价搜索系统业务的快速发展,系统集群内部网络流量规模不断增长。为了在高负载网络流量场景下,实现集群内部数据同步,提出基于Gossip协议的集群数据同步方案。所提方案从网络协议的传输层和应用层着手设计,在传输层使用用... 随着民航客票运价搜索系统业务的快速发展,系统集群内部网络流量规模不断增长。为了在高负载网络流量场景下,实现集群内部数据同步,提出基于Gossip协议的集群数据同步方案。所提方案从网络协议的传输层和应用层着手设计,在传输层使用用户数据报协议(UDP)来减少集群中节点间的连接数量和交互次数,从而实现数据在网络传输过程中的低流量、低耗时。在应用层使用Gossip传播协议来实现数据的最终一致性,保证数据传输的可靠性。通过传输层UDP传输协议和应用层Gossip传播协议相结合,保证了集群监控过程中数据同步的高效性和可靠性。 展开更多
关键词 GOSSIP协议 数据同步 一致性算法 高性能集群 去中心化
在线阅读 下载PDF
面向无线传感网络安全的轻量级加密算法研究 被引量:1
11
作者 石鲁生 朱慧博 《传感技术学报》 北大核心 2025年第1期168-173,共6页
轻量级加密算法需在保证安全性的同时尽可能地降低计算和存储资源的消耗,以适应传感器节点的硬件限制。为同时提高数据传输的安全性和准确性,降低传感器节点能耗和计算量,提出面向无线传感网络安全的轻量级加密算法。建立传感器节点分... 轻量级加密算法需在保证安全性的同时尽可能地降低计算和存储资源的消耗,以适应传感器节点的硬件限制。为同时提高数据传输的安全性和准确性,降低传感器节点能耗和计算量,提出面向无线传感网络安全的轻量级加密算法。建立传感器节点分簇模型,为簇首分配相应的对称密钥;利用TCDCP算法构建WSN线性回归模型,采集经过密钥分配处理后的感知数据;引入流密钥的轻量级同态加密算法,实现对感知数据的加密、解密处理,增强无线传感网络安全性能。仿真结果表明,所提算法的加密、解密时间分别为1.01 s、1.05 s,解密成功率平均值为97.0%,RAM空间、ROM空间占用字节数分别为770 kB、800 kB,能耗为82 mJ。所提方法能够有效地保护无线传感网络数据的机密性和完整性,降低资源消耗。 展开更多
关键词 无线传感网络 轻量级加密算法 分簇模型 线性回归模型 感知数据采集
在线阅读 下载PDF
基于ABWO的并行DCNN优化算法 被引量:1
12
作者 毛伊敏 刘映兴 《计算机工程与设计》 北大核心 2025年第2期353-359,共7页
针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异... 针对并行DCNN算法在大数据环境下存在特征差异性较小、模型性能不足、参数更新慢和集群并行效率低等问题,提出一种基于ABWO的并行DCNN优化算法PDCNN-ABWO。提出一种基于自适应密度峰值聚类的特征选择策略FS-ADPC划分原始特征,筛选差异性较大的特征;设计一种ResNet-CBAMDW模型,提升模型性能;提出一种基于自适应黑寡妇优化算法的并行训练策略PT-ABWO优化初始参数,加快参数更新速度;提出一种基于大数据基准测试的动态负载均衡策略DLB-BDB,合理分配任务负载,提升集群并行效率。实验结果表明,该算法能够有效提升DCNN在大数据环境下的训练效率。 展开更多
关键词 大数据 并行深度卷积神经网络算法 密度峰值聚类 自适应黑寡妇优化算法 并行训练 基准测试 负载均衡
在线阅读 下载PDF
矿井多人员定位轨迹的预警分类方法研究 被引量:1
13
作者 蔡安江 徐海涛 +1 位作者 程东波 刘锋伟 《金属矿山》 北大核心 2025年第1期243-249,共7页
为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时... 为解决矿井综采操作区域多人员定位轨迹的预警分类问题,提出了一种基于超宽带(Ultra Wide Band,UWB)的多人员定位轨迹数据的预警分类方法。该方法首先对采集的UWB定位轨迹数据进行预处理;然后利用UWB定位轨迹数据中的人员ID、坐标、时间、求救信号等特征参数作为UWB人员定位轨迹预警分类模型的输入指标,以人员的预警行为类别作为输出指标,对预警分类模型进行拟合训练,基于人员4级违规预警机制与专家建议设置预警阈值;最后采用随机森林算法对多人员UWB定位轨迹数据进行人员行为预警识别和分类。研究表明:该方法能够对区域人员作业超员、工作超时、作业求救、定位轨迹缺失和作业越界等行为进行有效预警并准确分类,能够消除隐患,提高矿山人员管理效率和生产作业的安全性。 展开更多
关键词 矿井定位 多人员 预警分类 UWB定位轨迹数据 随机森林算法
在线阅读 下载PDF
基于高速公路交易数据的出行模式分析与差异化收费策略
14
作者 吕能超 董新雨 +3 位作者 罗如意 曾岳凯 徐达 周新聪 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期129-138,共10页
基于高速公路交易数据,选取10项表征用户个体特征和出行时空特征的指标构建用户特征模型。采用K-means、模糊C-means以及自组织映射算法对用户特征进行分类,并应用于某路段的ETC数据。研究结果表明,相比于K-means和模糊C-means,SOM模型... 基于高速公路交易数据,选取10项表征用户个体特征和出行时空特征的指标构建用户特征模型。采用K-means、模糊C-means以及自组织映射算法对用户特征进行分类,并应用于某路段的ETC数据。研究结果表明,相比于K-means和模糊C-means,SOM模型在用户出行模式分类上具有更优效果;将高速公路出行用户划分为六类具有合理性。基于分类结果,针对性提出了个性化差异收费策略,并通过数值仿真验证了策略的合理性。 展开更多
关键词 ETC数据 聚类算法 出行模式分析 差异化收费
在线阅读 下载PDF
基于栅格细化的露天矿区路网模型快速构建方法
15
作者 顾清华 胡俸源 +3 位作者 王倩 柴小博 王丹 井欣欣 《煤炭学报》 北大核心 2025年第S1期645-654,共10页
露天矿区路网构建是实现露天矿卡车智能调度和无人驾驶的重要前提,但由于露天矿区道路较为复杂,矿车GPS轨迹数据采集量大,冗余数据和异常点繁多,构建路网模型仍存在较多难点。为解决此问题,提出一种基于栅格细化的露天矿区路网模型快速... 露天矿区路网构建是实现露天矿卡车智能调度和无人驾驶的重要前提,但由于露天矿区道路较为复杂,矿车GPS轨迹数据采集量大,冗余数据和异常点繁多,构建路网模型仍存在较多难点。为解决此问题,提出一种基于栅格细化的露天矿区路网模型快速构建方法。首先提出基于改进膨胀算法的栅格去噪方法,对轨迹点二值化生成的路网栅格进行清洗,使用改进膨胀算法对低连通度的栅格空缺进行填充,减少栅格离散和断裂的影响;然后构建基于改进Zhang-Suen细化算法的路网骨架提取模型,对栅格区域进行图像形态学特征识别,利用改进Zhang-Suen细化算法提取栅格骨架图,使得提取的栅格骨架宽度恒定为一个栅格,减少原始细化算法处理后的毛刺和冗余;之后利用轨迹的时序特性,设计基于轨迹时序的路网骨架连接算法,提取路网的实际通行道路,解决因栅格化方法导致的路网异常连通的问题,并获得更好的道路连通效果;最后,根据实际应用需求和路网道路结构构建实际的路网模型,提出点-路-点的路网模型结构,在保证路网逻辑结构不变的情况下大幅减少路网的复杂程度和计算规模,并使用folium对路网进行可视化处理。实验表明:该方法构建的路网准确性、完整性分别为95.45%、96.43%;程序运行时间为2.697 s,满足露天矿路网模型生成快、精度高的使用需求。 展开更多
关键词 露天矿 轨迹数据 二值化 Zhang-Suen细化算法 轨迹顺序
在线阅读 下载PDF
轨迹表示学习方法研究综述
16
作者 孟祥福 孙硕男 +2 位作者 张霄雁 冷强奎 方金凤 《计算机科学与探索》 北大核心 2025年第6期1437-1454,共18页
全球定位系统(GPS)、全球移动通信系统(GSM)的快速发展以及移动设备的普遍应用,产生了大量的轨迹数据。目前的轨迹数据处理方法通常以定长的向量形式输入到模型,因此如何将变长的轨迹数据转换成定长低维的嵌入向量十分重要。轨迹表示学... 全球定位系统(GPS)、全球移动通信系统(GSM)的快速发展以及移动设备的普遍应用,产生了大量的轨迹数据。目前的轨迹数据处理方法通常以定长的向量形式输入到模型,因此如何将变长的轨迹数据转换成定长低维的嵌入向量十分重要。轨迹表示学习旨在将轨迹数据转换为更具表达力和可解释性的表示形式。对轨迹表示学习的研究现状、方法及应用进行了全面综述。分类介绍了轨迹表示学习的关键技术,总结了现有轨迹公开数据集。将轨迹表示学习方法按照不同的下游任务进行分类,重点综述了轨迹表示学习方法在轨迹相似性计算、相似轨迹搜索、轨迹聚类、轨迹预测等领域的原理、优缺点和应用,并分别分析了每一类任务中具有代表性的模型结构和原理,及各类任务中不同方法的特点和优势。分析了当前轨迹表示学习所面临的挑战,探讨了如何解决轨迹表示学习中的数据稀疏性、多模态以及模型优化与隐私保护等问题,并提出了具体的研究思路和方法。 展开更多
关键词 轨迹表示学习 轨迹数据挖掘 轨迹相似性计算 相似轨迹搜索 轨迹聚类 轨迹预测
在线阅读 下载PDF
基于复杂网络聚类算法的用户学习行为动态演化模型
17
作者 刘俊娟 闫培玲 +1 位作者 肖俊生 王林景 《吉林大学学报(理学版)》 北大核心 2025年第5期1411-1417,共7页
为深入了解用户的学习习惯和发展趋势,根据用户需求和行为动态合理地调整教育资源,提出一个基于复杂网络聚类算法的用户学习行为动态演化模型.首先,设计复杂网络聚类模型,得到用户学习行为社区;其次,通过语义二值获得数据关联规则分布,... 为深入了解用户的学习习惯和发展趋势,根据用户需求和行为动态合理地调整教育资源,提出一个基于复杂网络聚类算法的用户学习行为动态演化模型.首先,设计复杂网络聚类模型,得到用户学习行为社区;其次,通过语义二值获得数据关联规则分布,利用多元回归方法挖掘关联规则,得到用户学习行为特征分布模型;最后,在门控递归单元网络中添加注意力机制,获得用户学习行为兴趣特征,并以此为输入量,得到动态演化模型.实验结果表明,该方法可有效区分学习社区中用户感兴趣和不感兴趣的行为数据;AUC值更接近于1,表明该方法的性能更好,实用性更强. 展开更多
关键词 复杂网络 社区挖掘 数据聚类算法 注意力机制 学习行为分析 动态演化
在线阅读 下载PDF
利用模糊关联规则挖掘和遗传算法的工业产品设计优化方法
18
作者 张晴 李丛 高广银 《西南大学学报(自然科学版)》 北大核心 2025年第7期207-218,共12页
在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结... 在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结合了多层人工智能技术:大数据分析、基于递归关联规则的模糊推理系统(RAFIS)以及Mamdani模糊推理系统。所提出的方法通过将模糊关联规则挖掘(FARM)和遗传算法(GA)纳入RAFIS,以缩小客户属性和设计参数之间的差距。首先,在FFE阶段,组织数据收集和管理,然后将数据集输入FARM和GA以获取最佳模糊规则和隶属函数。随后,利用这些结果建立用于定制产品设计特征的Mamdani模糊推理系统。通过优化Mamdani推理系统中的参数(包括隶属函数的类型、分区和范围),实现产品定制设计。实验以电动滑板车为例进行应用分析,并采用模糊综合评价方法评估设计方案。结果表明两种设计方案均获得较高满意度,验证了该方法的有效性和可行性。 展开更多
关键词 人工智能 产品设计 模糊关联规则挖掘 遗传算法 大数据分析
在线阅读 下载PDF
面向时间有序事务数据的聚簇频繁模式挖掘
19
作者 王少鹏 牛超煜 《软件学报》 北大核心 2025年第5期2342-2361,共20页
首次对时间有序事务数据中聚簇频繁模式的挖掘问题进行研究.为了解决Naive算法处理该问题时存在冗余运算的问题,提出一种改进的聚簇频繁模式挖掘算法ICFPM(improved cluster frequent pattern mining).该算法使用2种优化策略,一方面可... 首次对时间有序事务数据中聚簇频繁模式的挖掘问题进行研究.为了解决Naive算法处理该问题时存在冗余运算的问题,提出一种改进的聚簇频繁模式挖掘算法ICFPM(improved cluster frequent pattern mining).该算法使用2种优化策略,一方面可以利用定义的参数minCF,有效减少挖掘结果的搜索空间,另一方面可以参考(n–1)项集的判别结果加速聚簇频繁n项集的判别过程,算法还使用了ICFPM-list结构来减少候选n项集的构建开销.基于两个真实世界数据集的仿真实验证明了ICFPM算法的有效性,与Naive算法相比,ICFPM算法在时间和空间效率方面得到了大幅度的提高,是解决聚簇频繁模式挖掘的有效方法. 展开更多
关键词 时间有序事务数据 聚簇 频繁模式 数据挖掘 向下闭包
在线阅读 下载PDF
基于Apriori算法的供电公司营销数据挖掘系统设计
20
作者 张剑 刘畅 +3 位作者 杨逸 魏昕喆 张浩 王旭 《兵工自动化》 北大核心 2025年第7期97-101,共5页
为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库... 为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库,采用Apriori算法通过映射剪枝处理频繁项集,挖掘关联规则,建立多维数据挖掘模型,实现系统的数据挖掘功能。经实验论证分析,结果表明:该系统在电力负荷预测应用中的预测结果与实际值相差较小,在最小支持度和事务数据量条件下,数据挖掘执行时间分别在2和10 s以下,具有较高的执行效率,说明该系统是可行的。 展开更多
关键词 APRIORI算法 供电公司 服务器 营销数据挖掘系统 关联规则 数据仓库
在线阅读 下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部