In this paper,C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered.The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry.The p...In this paper,C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered.The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry.The proof is adapted from Guan-Li[17]and Chen-Tu-Wu-Xiang[11].展开更多
Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challe...Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challenging.Herein,wepropose visual rehabilitation training system including iontronic meta-fabrics withskin-friendly and large matrix features,as well as high-resolution image modules fordistribution of human muscle tension.Attributed to the dynamic connection and dissociationof the meta-fabric,the fabric exhibits outstanding tactile sensing properties,such as wide tactile sensing range(0~300 kPa)and high-resolution tactile perception(50 Pa or 0.058%).Meanwhile,thanks to the differential capillary effect,the meta-fabric exhibits a“hitting three birds with one stone”property(dryness wearing experience,long working time and cooling sensing).Based on this,the fabrics can be integrated with garmentsand advanced data analysis systems to manufacture a series of large matrix structure(40×40,1600 sensing units)training devices.Significantly,the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allowthis visualization training strategy extendable to various common disease monitoring.Therefore,we believe that our study overcomes theconstraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.展开更多
Objective The study of medicine formulas is a core component of traditional Chinese medicine(TCM),yet traditional learning methods often lack interactivity and contextual understanding,making it challenging for beginn...Objective The study of medicine formulas is a core component of traditional Chinese medicine(TCM),yet traditional learning methods often lack interactivity and contextual understanding,making it challenging for beginners to grasp the intricate composition rules of formulas.To address this gap,we introduce Formula-S,a situated visualization method for TCM formula learning in augmented reality(AR)and evaluate its performance.This study aims to evaluate the effectiveness of Formula-S in enhancing TCM formula learning for beginners by comparing it with traditional text-based formula learning and web-based visualization.Methods Formula-S is an interactive AR tool designed for TCM formula learning,featuring three modes(3D,Web,and Table).The dataset included TCM formulas and herb properties extracted from authoritative references,including textbook and the SymMap database.In Formula-S,the hierarchical visualization of the formulas as herbal medicine compositions,is linked to the multidimensional herb attribute visualization and embedded in the real world,where real herb samples are presented.To evaluate its effectiveness,a controlled study(n=30)was conducted.Participants who had no formal TCM knowledge were tasked with herbal medicine identification,formula composition,and recognition.In the study,participants interacted with the AR tool through HoloLens 2.Data were collected on both task performance(accuracy and response time)and user experience,with a focus on task efficiency,accuracy,and user preference across the different learning modes.Results The situated visualization method of Formula-S had comparable accuracy to other methods but shorter response time for herbal formula learning tasks.Regarding user experience,our new approach demonstrated the highest system usability and lowest task load,effectively reducing cognitive load and allowing users to complete tasks with greater ease and efficiency.Participants reported that Formula-S enhanced their learning experience through its intuitive interface and immersive AR environment,suggesting this approach offers usability advantages for TCM education.Conclusions The situated visualization method in Formula-S offers more efficient and accurate searching capabilities compared to traditional and web-based methods.Additionally,it provides superior contextual understanding of TCM formulas,making it a promising new solution for TCM learning.展开更多
文摘In this paper,C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered.The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry.The proof is adapted from Guan-Li[17]and Chen-Tu-Wu-Xiang[11].
基金supported by the National Key Research and Development Program(2022YFB3805800)National Natural Science Foundation of China(52473307,22208178,62301290)+9 种基金Taishan Scholar Program of Shandong Province in China(tsqn202211116)Shandong Provincial Universities Youth Innovation Technology Plan Team(2023KJ223)Natural Science Foundation of Shandong Province of China(ZR2023YQ037,ZR2020QE074,ZR2023QE043,ZR2022QE174)Shandong Province Science and Technology Small and Medium sized Enterprise Innovation Ability Enhancement Project(2023TSGC0344,2023TSGC1006)Natural Science Foundation of Qingdao(23-2-1-249-zyyd-jch,24-4-4-zrjj-56-jch)Anhui Province Postdoctoral Researcher Research Activity Funding Project(2023B706)Qingdao Key Technology Research and Industrialization Demonstration Projects(23-1-7-zdfn-2-hz)Qingdao Shinan District Science and Technology Plan Project(2022-3-005-DZ)Suqian Key Research and Development Plan(H202310)Jinan City-School Integration Development Strategy Project for the Year 2023 under Grant(JNSX2023088).
文摘Rehabilitation training is believed to be an effectual strategy that canreduce the risk of dysfunction caused by spasticity.However,achieving visualizationrehabilitation training for patients remains clinically challenging.Herein,wepropose visual rehabilitation training system including iontronic meta-fabrics withskin-friendly and large matrix features,as well as high-resolution image modules fordistribution of human muscle tension.Attributed to the dynamic connection and dissociationof the meta-fabric,the fabric exhibits outstanding tactile sensing properties,such as wide tactile sensing range(0~300 kPa)and high-resolution tactile perception(50 Pa or 0.058%).Meanwhile,thanks to the differential capillary effect,the meta-fabric exhibits a“hitting three birds with one stone”property(dryness wearing experience,long working time and cooling sensing).Based on this,the fabrics can be integrated with garmentsand advanced data analysis systems to manufacture a series of large matrix structure(40×40,1600 sensing units)training devices.Significantly,the tunability of piezo-ionic dynamics of the meta-fabric and the programmability of high-resolution imaging modules allowthis visualization training strategy extendable to various common disease monitoring.Therefore,we believe that our study overcomes theconstraint of standard spasticity rehabilitation training devices in terms of visual display and paves the way for future smart healthcare.
文摘Objective The study of medicine formulas is a core component of traditional Chinese medicine(TCM),yet traditional learning methods often lack interactivity and contextual understanding,making it challenging for beginners to grasp the intricate composition rules of formulas.To address this gap,we introduce Formula-S,a situated visualization method for TCM formula learning in augmented reality(AR)and evaluate its performance.This study aims to evaluate the effectiveness of Formula-S in enhancing TCM formula learning for beginners by comparing it with traditional text-based formula learning and web-based visualization.Methods Formula-S is an interactive AR tool designed for TCM formula learning,featuring three modes(3D,Web,and Table).The dataset included TCM formulas and herb properties extracted from authoritative references,including textbook and the SymMap database.In Formula-S,the hierarchical visualization of the formulas as herbal medicine compositions,is linked to the multidimensional herb attribute visualization and embedded in the real world,where real herb samples are presented.To evaluate its effectiveness,a controlled study(n=30)was conducted.Participants who had no formal TCM knowledge were tasked with herbal medicine identification,formula composition,and recognition.In the study,participants interacted with the AR tool through HoloLens 2.Data were collected on both task performance(accuracy and response time)and user experience,with a focus on task efficiency,accuracy,and user preference across the different learning modes.Results The situated visualization method of Formula-S had comparable accuracy to other methods but shorter response time for herbal formula learning tasks.Regarding user experience,our new approach demonstrated the highest system usability and lowest task load,effectively reducing cognitive load and allowing users to complete tasks with greater ease and efficiency.Participants reported that Formula-S enhanced their learning experience through its intuitive interface and immersive AR environment,suggesting this approach offers usability advantages for TCM education.Conclusions The situated visualization method in Formula-S offers more efficient and accurate searching capabilities compared to traditional and web-based methods.Additionally,it provides superior contextual understanding of TCM formulas,making it a promising new solution for TCM learning.