期刊文献+
共找到2,030篇文章
< 1 2 102 >
每页显示 20 50 100
Near-Infrared Imaging Using a High-Speed Monitoring Near Infrared Hyperspectral Camera(Compovision) 被引量:3
1
作者 Daitaro Ishikawa Asako Motomura +1 位作者 Yoko Igarashi Yukihiro Ozaki 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第4期865-869,共5页
This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enab... This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enables a wide spectral region measurement in the 1 000~2 350nm range at 6nm intervals.We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers.Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection.NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products,biomedical substances and organic and inorganic materials. 展开更多
关键词 Near infrared spectroscopy imaging hyperspectral camera
在线阅读 下载PDF
Detection of Apple Marssonina Blotch with PLSR, PCA, and LDA Using Outdoor Hyperspectral Imaging 被引量:3
2
作者 Soo Hyun Park Youngki Hong +2 位作者 Mubarakat Shuaibu Sangcheol Kim Won Suk Lee 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2020年第4期1309-1314,共6页
In this study, hyperspectral images were used to detect a fungal disease in apple leaves called Marssonina blotch(AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic classes using part... In this study, hyperspectral images were used to detect a fungal disease in apple leaves called Marssonina blotch(AMB). Estimation models were built to classify healthy, asymptomatic and symptomatic classes using partial least squares regression(PLSR), principal component analysis(PCA), and linear discriminant analysis(LDA) multivariate methods. In general, the LDA estimation model performed the best among the three models in detecting AMB asymptomatic pixels, while all the models were able to detect the symptomatic class. LDA correctly classified asymptomatic pixels and LDA model predicted them with an accuracy of 88.0%. An accuracy of 91.4% was achieved as the total classification accuracy. The results from this work indicate the potential of using the LDA estimation model to identify asymptomatic pixels on leaves infected by AMB. 展开更多
关键词 APPLE Marssonina blotch hyperspectral imaging PLSR PCA LDA
在线阅读 下载PDF
Hyperspectral imaging and remote trace detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)compared with traditional explosives using laser induced fluorescence
3
作者 Hany S.Ayoub Ashraf F.El-Sherif Ahmed Elbeih 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1609-1616,共8页
cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current ... cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2). 展开更多
关键词 hyperspectral imaging Remote trace detection BCHMX Laser induced fluorescence
在线阅读 下载PDF
Application of Hyperspectral Imaging Technology in Rapid Detection of Preservative in Milk
4
作者 Sun Hong-min Huang Yu +1 位作者 Wang Yan Lu Yao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2020年第4期88-96,共9页
To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Inf... To ensure the quality and safety of pure milk,detection method of typical preservative-potassium sorbate in milk was researched in this paper.Hyperspectral imaging technology was applied to realize rapid detection.Influence factors for hyperspectral data collection for milk samples were firstly researched,including height of sample,bottom color and sample filled up container or not.Pretreatment methods and variable selection algorithms were applied into original spectral data.Rapid detection models were built based on support vector machine method(SVM).Finally,standard normalized variable(SNV)-competitive adaptive reweighted sampling(CARS)and SVM model was chosen in this paper.The accuracies of calibration set and testing set were 0.97 and 0.97,respectively.Kappa coefficient of the model was 0.93.It could be seen that hyperspectral imaging technology could be used to detect for potassium sorbate in milk.Meanwhile,it also provided methodological supports for the rapid detection of other preservatives in milk. 展开更多
关键词 hyperspectral imaging technology PRESERVATIVE MILK potassium sorbate competitive adaptive reweighted sampling(CARS)
在线阅读 下载PDF
Feasibility study of assessing cotton fiber maturity from near infrared hyperspectral imaging technique
5
作者 LIU Yongliang TAO Feifei +1 位作者 YAO Haibo KINCAID Russell 《Journal of Cotton Research》 CAS 2023年第4期266-276,共11页
Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laborat... Background Fiber maturity is a key cotton quality property,and its variability in a sample impacts fiber processing and dyeing performance.Currently,the maturity is determined by using established protocols in laboratories under a controlled environment.There is an increasing need to measure fiber maturity using low-cost(in general less than $20000)and small portable systems.In this study,a laboratory feasibility was performed to assess the ability of the shortwave infrared hyperspectral imaging(SWIR HSI)technique for determining the conditioned fiber maturity,and as a comparison,a bench-top commercial and expensive(in general greater than $60000)near infrared(NIR)instrument was used.Results Although SWIR HSI and NIR represent different measurement technologies,consistent spectral characteristics were observed between the two instruments when they were used to measure the maturity of the locule fiber samples in seed cotton and of the well-defined fiber samples,respectively.Partial least squares(PLS)models were established using different spectral preprocessing parameters to predict fiber maturity.The high prediction precision was observed by a lower root mean square error of prediction(RMSEP)(<0.046),higher R_(p)^(2)(>0.518),and greater percentage(97.0%)of samples within the 95% agreement range in the entire NIR region(1000-2500 nm)without the moisture band at 1940 nm.Conclusion SWIR HSI has a good potential for assessing cotton fiber maturity in a laboratory environment. 展开更多
关键词 Near infrared spectroscopy Near infrared hyperspectral imaging Fiber maturity Seed cotton Partial least squares regression
在线阅读 下载PDF
Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification 被引量:4
6
作者 Ding Yao Zhang Zhi-li +4 位作者 Zhao Xiao-feng Cai Wei He Fang Cai Yao-ming Wei-Wei Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期164-176,共13页
With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and th... With limited number of labeled samples,hyperspectral image(HSI)classification is a difficult Problem in current research.The graph neural network(GNN)has emerged as an approach to semi-supervised classification,and the application of GNN to hyperspectral images has attracted much attention.However,in the existing GNN-based methods a single graph neural network or graph filter is mainly used to extract HSI features,which does not take full advantage of various graph neural networks(graph filters).Moreover,the traditional GNNs have the problem of oversmoothing.To alleviate these shortcomings,we introduce a deep hybrid multi-graph neural network(DHMG),where two different graph filters,i.e.,the spectral filter and the autoregressive moving average(ARMA)filter,are utilized in two branches.The former can well extract the spectral features of the nodes,and the latter has a good suppression effect on graph noise.The network realizes information interaction between the two branches and takes good advantage of different graph filters.In addition,to address the problem of oversmoothing,a dense network is proposed,where the local graph features are preserved.The dense structure satisfies the needs of different classification targets presenting different features.Finally,we introduce a GraphSAGEbased network to refine the graph features produced by the deep hybrid network.Extensive experiments on three public HSI datasets strongly demonstrate that the DHMG dramatically outperforms the state-ofthe-art models. 展开更多
关键词 Graph neural network hyperspectral image classification Deep hybrid network
在线阅读 下载PDF
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
7
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
在线阅读 下载PDF
Low complexity DCT-based distributed source coding with Gray code for hyperspectral images 被引量:1
8
作者 Rongke Liu Jianrong Wang Xuzhou Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期927-933,共7页
To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize tr... To compress hyperspectral images, a low complexity discrete cosine transform (DCT)-based distributed source coding (DSC) scheme with Gray code is proposed. Unlike most of the existing DSC schemes, which utilize transform in spatial domain, the proposed algorithm applies transform in spectral domain. Set-partitioning-based approach is applied to reorganize DCT coefficients into waveletlike tree structure and extract the sign, refinement, and significance bitplanes. The extracted refinement bits are Gray encoded. Because of the dependency along the line dimension of hyperspectral images, low density paritycheck-(LDPC)-based Slepian-Wolf coder is adopted to implement the DSC strategy. Experimental results on airborne visible/infrared imaging spectrometer (AVIRIS) dataset show that the proposed paradigm achieves up to 6 dB improvement over DSC-based coders which apply transform in spatial domain, with significantly reduced computational complexity and memory storage. 展开更多
关键词 image compression hyperspectral images distributed source coding (DSC) discrete cosine transform (DCT) Gray code band-interleaved-by-pixel (BIP).
在线阅读 下载PDF
Junk band recovery for hyperspectral image based on curvelet transform
9
作者 孙蕾 罗建书 《Journal of Central South University》 SCIE EI CAS 2011年第3期816-822,共7页
Under consideration that the profiles of bands at close wavelengths are quite similar and the curvelets are good at capturing profiles, a junk band recovery algorithm for hyperspectral data based on curvelet transform... Under consideration that the profiles of bands at close wavelengths are quite similar and the curvelets are good at capturing profiles, a junk band recovery algorithm for hyperspectral data based on curvelet transform is proposed. Both the noisy bands and the noise-free bands are transformed via curvelet band by band. The high frequency coefficients in junk bands are replaced with linear interpolation of the high frequency coefficients in noise-flee bands, and the low frequency coefficients remain the same to keep the main spectral characteristics from being distorted. Jutak bands then are recovered after the inverse curvelet transform. The performance of this method is tested on the hyperspectral data cube obtained by airborne visible/infrared imaging spectrometer (AVIRIS). The experimental results show that the proposed method is superior to the traditional denoising method BayesShrink and the art-of-state Curvelet Shrinkage in both roots of mean square error (RMSE) and peak-signal-to-noise ratio (PSNR) of recovered bands. 展开更多
关键词 hyperspectral image curvelet transform junk band denosing
在线阅读 下载PDF
Unsupervised hyperspectral unmixing based on robust nonnegative dictionary learning 被引量:1
10
作者 LI Yang JIANG Bitao +2 位作者 LI Xiaobin TIAN Jing SONG Xiaorui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第2期294-304,共11页
Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary l... Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions. 展开更多
关键词 hyperspectral image(HSI) nonnegative dictionary learning norm loss function unsupervised unmixing
在线阅读 下载PDF
基于高光谱成像技术的包衣甘蓝种子色度检测 被引量:1
11
作者 吴龙国 马玲 +3 位作者 张瑶 田雨 朱彦哲 张祎洋 《分析测试学报》 北大核心 2025年第3期454-463,共10页
采用高光谱成像技术对包衣过程中4个不同品种的包衣甘蓝种子,3个不同浓度包衣剂处理的包衣甘蓝种子的包衣颜色均匀性以及包衣颜色深浅进行分析。提取出240个种子样本的平均光谱反射率,通过4种预处理方法对原始光谱进行预处理和优化,然... 采用高光谱成像技术对包衣过程中4个不同品种的包衣甘蓝种子,3个不同浓度包衣剂处理的包衣甘蓝种子的包衣颜色均匀性以及包衣颜色深浅进行分析。提取出240个种子样本的平均光谱反射率,通过4种预处理方法对原始光谱进行预处理和优化,然后用竞争自适应重加权算法(CARS)、连续投影算法(SPA)、无信息变量消除变换法(UVE)、遗传偏最小二乘法(GAPLS)4种方法提取特征波长。基于优选的特征波长建立了偏最小二乘回归(PLSR)、多元线性回归(MLR)以及主成分回归(PCR)模型。结果表明:羽衣甘蓝种子的包衣效果最明显,佳香口感型甘蓝次之,中甘15和紫甘蓝的包衣效果接近;优选Baseline法对色度值L*进行预处理,Normalize法对色度值a进行预处理,SNV法对色度值b进行预处理;GAPLS法提取的特征波长用于建立L^(*)、b的定量预测模型,UVE法提取的特征波长用于建立色度a值的定量预测模型。PLSR建立的L*模型效果最优(R_(C)=0.814,Rp=0.640;RMSEC=1.150,RMSEP=1.852);MLR建立的色度a值模型效果更优(R_(c)=0.981,Rp=0.964;RMSEC=2.563,RMSEP=3.243);PCR建立的色度b值模型效果最优(R_(C)=0.917,Rp=0.913;RMSEC=2.552,RMSEP=2.589)。研究结果可为种子色度的在线监测提供技术支撑。 展开更多
关键词 高光谱成像 包衣甘蓝种子 色度 检测
在线阅读 下载PDF
自适应全变差和低秩约束的高光谱图像稀疏解混 被引量:1
12
作者 徐晨光 郭禹 +4 位作者 李峰 刘翼 李艳 邓承志 刘燕德 《光谱学与光谱分析》 北大核心 2025年第4期1071-1081,共11页
高光谱稀疏解混是利用一个含有丰富的端元光谱信息的光谱库作为先验,并对高光谱数据进行分解,得到与光谱库中各端元光谱对应的丰度的图像处理技术。然而目前大多数稀疏解混方法,在高噪声条件下的解混效果不佳,且很多去噪解混算法只是片... 高光谱稀疏解混是利用一个含有丰富的端元光谱信息的光谱库作为先验,并对高光谱数据进行分解,得到与光谱库中各端元光谱对应的丰度的图像处理技术。然而目前大多数稀疏解混方法,在高噪声条件下的解混效果不佳,且很多去噪解混算法只是片面的利用了高光谱的某些特性,并没有对高光谱特性进行全面考虑,从而影响了解混算法的精度。为了解决这一问题,创新地提出了一种基于自适应全变差和低秩约束的高光谱图像稀疏解混方法。首先对稀疏解混算法进行了详细的介绍,接着对自适应全变差和低秩约束的高光谱图像稀疏解混算法进行建模,提出自适应全变差和低秩约束的高光谱图像稀疏解混算法。该算法把高光谱数据的低秩特性和自适应TV空间特性进行了融合,在保持丰度的低秩性和稀疏性的同时,自适应调整丰度矩阵在不同结构下全变差正则化的水平差和垂直差比例,达到更好的去噪效果。然后,使用ADMM算法对新的模型进行求解。最后,利用SUnSAL-TV,ADSpLRU,S2WSU,SU-ATV等几种比较经典的算法与本算法比较,通过两组模拟数据和一组真实数据来实验验证算法的好坏。两组模拟数据分别是在背景单一的DC1和背景复杂的DC2中各自加入10、15和20 dB三种高斯噪声得到的数据。模拟数据实验通过利用不同算法对这两组数据解混,对解混结果的信号与重建误差比、丰度重构正确率和稀疏度三个数值来比较,并对几种算法解混后的丰度图像、丰度图像与真实图像的差值图等信息进行观察对比,从而分析几种算法的好坏。真实数据实验是利用了内华达州的Cuprite矿区高光谱真实数据对解混结果进行分析对比,进一步用真实数据验证本算法的优势。实验结果表明:本方法相对于较为流行的几种解混方法具有更好的鲁棒性和解混效果,在SRE方面提高了11.4%~310.2%,拥有更出色的性能。 展开更多
关键词 稀疏解混 自适应全变差 低秩约束 高光谱图像
在线阅读 下载PDF
基于多源遥感数据的遥感影像生态地块划分方法 被引量:2
13
作者 李双营 《现代电子技术》 北大核心 2025年第5期142-146,共5页
为资源合理利用、生态保护与修复提供科学依据,文中提出基于多源遥感数据的遥感影像生态地块划分方法,实现了高精度生态地块划分。采用高频调制融合法逐像素融合处理采集的生态环境多源遥感影像;构建新的卷积神经网络(CNN),以融合后的... 为资源合理利用、生态保护与修复提供科学依据,文中提出基于多源遥感数据的遥感影像生态地块划分方法,实现了高精度生态地块划分。采用高频调制融合法逐像素融合处理采集的生态环境多源遥感影像;构建新的卷积神经网络(CNN),以融合后的高光谱影像为输入,通过在CNN中引入分组卷积和残差学习,实现输入高光谱影像多尺度特征提取,经过全连接层和softmax层的处理后,输出生态地块划分结果,并在softmax层中引入多分类Focal loss损失函数,解决生态地块划分结果产生的类别不平衡问题,提升生态地块划分精度。实验证明,该方法能够准确划分生态地块,划分精度平均值达到95.38%。融合后的多源遥感影像光谱扭曲度数值均低于20,可以确保融合影像在光谱信息上的高保真度,提高生态地块划分的准确性。 展开更多
关键词 多源遥感 遥感影像 生态地块 划分方法 高通滤波融合 高光谱影像 融合影像 特征提取
在线阅读 下载PDF
基于注意力机制的高光谱图像降维在纸质文物霉斑识别的研究
14
作者 汤斌 贺渝龙 +6 位作者 唐欢 龙邹荣 王建旭 谭博文 覃丹 罗希玲 赵明富 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期246-255,共10页
纸质文物作为文物传承的重要工具,用于记录不同时期人类历史及人文风貌,其在保存过程中极易受到霉菌等微生物的侵害。霉菌会加速纤维素的降解,在纸张表面生成霉斑,并且散落的孢子会随空气流动大范围传播,增加其他纸质文物发生霉变的风... 纸质文物作为文物传承的重要工具,用于记录不同时期人类历史及人文风貌,其在保存过程中极易受到霉菌等微生物的侵害。霉菌会加速纤维素的降解,在纸张表面生成霉斑,并且散落的孢子会随空气流动大范围传播,增加其他纸质文物发生霉变的风险。因此,定期对纸质文物进行霉斑检测对了解纸质文物现状和纸质文物修复至关重要。高光谱成像技术是一种非接触性、非破坏性的检测技术,能同时获得空间数据和光谱数据,与计算机技术结合可以实现纸质文物的大批次实时无损检测。针对黑曲霉这一广泛出现的霉菌,提出一种基于注意力机制的高光谱数据降维方法,通过采集其高光谱数据,实现了高光谱冗余数据的自适应预处理。采集了来自重庆中国三峡博物馆提供的20份纸质文物黑曲霉霉斑样本,使用ENVI软件分析得出在413~855 nm波段范围内,黑曲霉霉斑感染区域和健康区域的平均光谱曲线,平均反射率差异明显;在855~1021 nm波段范围内,黑曲霉霉斑感染区域和墨迹区域的平均光谱曲线,平均反射率差异明显。文中将所提出方法与传统主成分分析和独立成分分析预处理方法分别处理原始高光谱数据,并将结果在经典U-Net、SegNet、DeepLabV3+和PSPNet四个语义分割网络上进行了对比。结果表明,该算法预处理的数据在U-Net和SegNet经典网络中有明显优势,相较于主成分分析法和独立成分分析法,霉斑识别精度取得了较大提升达到89.49%和88.46%,验证了本文所提出算法的有效性,为文物保护领域提供有效的支撑和新的思路。 展开更多
关键词 高光谱数据预处理 霉斑识别 纸质文物 注意力机制 图像分割
在线阅读 下载PDF
CNN联合多尺度Transformer的高光谱与多光谱图像融合
15
作者 徐光宪 周伟杰 马飞 《红外技术》 北大核心 2025年第1期52-62,共11页
高光谱图像具有丰富的光谱信息,多光谱图像具有精妙的几何特征,融合高分辨率的多光谱图像和低分辨率的高光谱图像可以获取更为全面的遥感数据图像。然而现有的融合网络大多数基于卷积神经网络所设计,对于结构复杂的遥感类图像而言,依赖... 高光谱图像具有丰富的光谱信息,多光谱图像具有精妙的几何特征,融合高分辨率的多光谱图像和低分辨率的高光谱图像可以获取更为全面的遥感数据图像。然而现有的融合网络大多数基于卷积神经网络所设计,对于结构复杂的遥感类图像而言,依赖于核大小的卷积运算,容易导致特征融合阶段缺乏一些全局上下文信息。为保证图像融合的质量,本文提出了一种CNN(Convolutional Neural Network,CNN)联合多尺度transformer网络来实现多光谱和高光谱图像融合,结合了CNN的特征提取能力与transformer的全局建模优势。网络将融合任务分为了两个阶段,特征提取阶段和融合阶段。特征提取阶段,针对图像特性,基于卷积神经网络分别设计了不同模块用于特征提取。融合阶段,通过多尺度transformer模块从局部到全局建立信息间长距离关联,最后通过多层卷积层将特征映射为高分辨率的高光谱图像。经过在CAVE和Harvard数据集的实验结果表明,本文所提算法与其他经典算法相比,能更好地提升融合图像的质量。 展开更多
关键词 高光谱图像 多光谱图像 卷积神经网络 TRANSFORMER 图像融合
在线阅读 下载PDF
基于张量环子空间平滑与图正则的高光谱图像超分辨率方法研究
16
作者 杨飞霞 李正 马飞 《计算机科学》 北大核心 2025年第8期240-250,共11页
针对现有经典的矩阵分解模型会导致三维数据结构信息丢失,特别是受到噪声污染时重构图像质量严重下降等问题,提出了一种子空间平滑正则化与图正则相结合的高光谱与多光谱图像融合的方法,在保持立方体结构特征的同时利用流形结构与局部... 针对现有经典的矩阵分解模型会导致三维数据结构信息丢失,特别是受到噪声污染时重构图像质量严重下降等问题,提出了一种子空间平滑正则化与图正则相结合的高光谱与多光谱图像融合的方法,在保持立方体结构特征的同时利用流形结构与局部平滑特性来实现高光谱图像超分辨率的重建。首先,利用空间子空间与光谱子空间的局部自相似性,通过张量环因子构建空间图和光谱图来挖掘空间光谱流形结构,以提升重建图像质量;其次,引入子空间平滑正则化用于促进目标图像子空间的分段平滑;最后,设计一种高效的近端交替最小化算法对所提出的算法进行求解。在3个常用的实验数据集上进行的实验表明,所提出的模型不仅能改善空间细节和结构,在一定程度上还能抑制噪声。 展开更多
关键词 高光谱图像 高光谱与多光谱图像融合 张量环分解 图正则 子空间平滑正则化
在线阅读 下载PDF
面向地物分类的高光谱视觉显著性波段选择方法研究
17
作者 杨桄 胡昊文 +4 位作者 金椿柏 任春颖 王龙光 王琪 刘文婧 《光谱学与光谱分析》 北大核心 2025年第10期2950-2959,共10页
遥感图像波段选择是遥感数据应用的前提,它帮助人们对遥感图像进行可视化分析和解译,并且能够增强图像的质量,体现地表不同地物之间的差异性,为目标识别、图像分类、变化检测提供数据基础。但是,高光谱图像波段数目众多,即光谱维度高的... 遥感图像波段选择是遥感数据应用的前提,它帮助人们对遥感图像进行可视化分析和解译,并且能够增强图像的质量,体现地表不同地物之间的差异性,为目标识别、图像分类、变化检测提供数据基础。但是,高光谱图像波段数目众多,即光谱维度高的特性给高光谱图像波段组合带来了巨大问题与挑战。所以,对高光谱数据进行降维处理是必要的。波段选择研究中,为了保持原始波段的光谱特性不变,特征(波段)选择方法是最合理的降维方法。在原始数据集合中选择特定波段构成波段子集,随后进行波段组合研究。本文设计了一种改进近邻子空间划分(IASP)的方法,构建了基于视觉显著性的波段选择模型在模型中通过对比各个典型显著性检测算法的效果,最终选择HC(histogram-based Contrast)显著性算法选择显著波段,并设计对比实验,利用珠海一号高光谱卫星数据,验证了该方法的有效性。 展开更多
关键词 高光谱图像 视觉显著性 波段选择 波段组合 最佳指数因子
在线阅读 下载PDF
基于高光谱成像的烟火药快速可视化识别方法
18
作者 李云鹏 王宏炜 +3 位作者 代雪晶 武连全 胡伟成 张彦春 《光谱学与光谱分析》 北大核心 2025年第8期2183-2189,共7页
涉爆现场勘查工作中,烟火药的快速探测和准确识别对重大突发爆炸案件的防控与快速处置起着至关重要的作用,而当前对烟火药等爆炸物进行现场快速检测方法大多存在识别速度低、可视化困难等问题。鉴于此,提出一种基于高光谱成像技术结合... 涉爆现场勘查工作中,烟火药的快速探测和准确识别对重大突发爆炸案件的防控与快速处置起着至关重要的作用,而当前对烟火药等爆炸物进行现场快速检测方法大多存在识别速度低、可视化困难等问题。鉴于此,提出一种基于高光谱成像技术结合单类支持向量机(OCSVM)快速发现与识别烟火药的方法。首先,使用高光谱相机采集检材400~720 nm波段的高光谱数据,运用主成分分析(PCA)对数据进行降维,通过乘性散射校正(MSC)消除样本表面颗粒散射引起的基线偏移,使用Savitzky-Golay(SG)平滑抑制高频噪声,提升光谱信噪比。其次,为减少模型复杂度提高效率,通过Kennnard-Stone(K-S)方法从光谱数据中选取代表性的烟火药样本作为数据集,以4∶1的比例将其划分为训练集和测试集,在此基础上建立OCSVM模型。再次,为验证模型对烟火药的识别能力,使用相同的训练集建立孤立森林(iForest)、自编码器(AE)模型,对比三种模型对烟火药的识别能力。最后,将识别结果映射到检材的RGB图像中,采取掩膜操作标记目标类像素得到识别图像,实现烟火药的可视化识别效果。结果表明,OCSVM方法对多种检材识别的总体精度高于0.95、F1得分和AUC值超过0.8、识别时间低于2 s,OCSVM在分类准确率、运行速度、F1得分和曲线下面积(AUC)等指标上的表现均优于孤立森林模型和自编码器模型。在可视化识别方面,经过映射和掩膜操作后得到基于OCSVM模型的识别图像可以较为准确的反映出烟火药在所有检材中的分布情况,而基于孤立森林和自编码器模型的识别图像未能很好的反映烟火药在黄色纸和黑色涤纶布料上的分布。研究表明,本文提出的基于高光谱成像结合OCSVM的烟火药识别方法具有识别准确率高、反应速度快、泛化能力强的特点,能够快速、准确、无损地识别检材中的烟火药。其识别精度、识别速度以及可视化效果可很好的适用于涉爆现场烟火药的快速发现与临场检测,为现场勘查中烟火药的搜寻提供一种有效方法。 展开更多
关键词 高光谱成像技术 单类支持向量机 烟火药 可视化识别
在线阅读 下载PDF
基于多尺度空间-光谱特征提取的颜料高光谱图像分类方法
19
作者 汤斌 罗希玲 +6 位作者 王建旭 范文奇 孙玉宇 刘家路 唐欢 赵雅 钟年丙 《光谱学与光谱分析》 北大核心 2025年第8期2364-2372,共9页
颜料不仅赋予文物色彩和美感,更承载着丰富的历史、文化与技术信息,因此对颜料的准确分类与识别是古代彩绘作品修复、保护及学术研究的重要基础。通过检测颜料的种类与化学成分,不仅能帮助确定作品的创作年代、地域特征及工艺风格,还能... 颜料不仅赋予文物色彩和美感,更承载着丰富的历史、文化与技术信息,因此对颜料的准确分类与识别是古代彩绘作品修复、保护及学术研究的重要基础。通过检测颜料的种类与化学成分,不仅能帮助确定作品的创作年代、地域特征及工艺风格,还能为科学修复提供指导依据。然而,传统颜料分析受限于样品尺寸、表面平整度,且部分分析方法需要取样,对文物造成不可逆损伤,这使得古书画颜料的检测面临诸多挑战。高光谱成像技术(HSI)凭借其无损检测、广域扫描及获取完整光谱信息的优势,成为文物颜料分析的重要工具。HSI克服了样品表面不平整、尺寸受限等问题,能够从不同波段获取细致的光谱和空间信息,帮助提取颜料的微观特征。旨在利用HSI技术实现古书画颜料的精准分类与深度特征提取,以应对复杂场景下的颜料检测挑战。为此,我们提出了一种多尺度空间-光谱特征融合的方法,在分析过程中结合不同层次的信息:利用光谱-空间注意力机制捕捉细节特征,并通过视觉转换器(ViT)模型获取图像整体的高层语义信息,从而增强对复杂颜料特征的表示能力和分类性能。实验结果表明,该方法在模拟画作样品上的分类性能显著优于传统和其他深度学习模型:与支持向量机(SVM)相比,分类精度提升了34.35%;相较于HyBridSN与SSRN模型,精度分别提高了8.93%和5.6%。本方法不仅提升了颜料检测的准确性,还为古书画的科学修复和价值保护提供了无损、可靠的技术支持,并为文物保护的智能化发展奠定了技术基础。 展开更多
关键词 高光谱成像 多尺度特征融合 Vision Transformer 光谱-空间注意力 颜料分类
在线阅读 下载PDF
高光谱图像结合一维卷积神经网络的玉米大斑病早期识别
20
作者 路阳 顾福谦 +2 位作者 谷英楠 许思源 王鹏 《光谱学与光谱分析》 北大核心 2025年第8期2302-2310,共9页
大斑病在全球各大玉米产区都有出现,降低了玉米的品质和产量。该病害多在病斑明显时识别,难以及时防治。本文提出一维卷积神经网络(1DCNN)高光谱模型,实现早期识别。以玉米大斑病为研究对象,手动接种大斑病后,选取吐丝期的玉米叶片进行... 大斑病在全球各大玉米产区都有出现,降低了玉米的品质和产量。该病害多在病斑明显时识别,难以及时防治。本文提出一维卷积神经网络(1DCNN)高光谱模型,实现早期识别。以玉米大斑病为研究对象,手动接种大斑病后,选取吐丝期的玉米叶片进行试验,此时期刚显现病斑特征,但无法通过视觉属性观察看出是何种病害。首先采用SOC710E光谱仪采集高光谱图像,通过选取感兴趣区域获得玉米叶片的健康和大斑病两种光谱数据。使用SG卷积平滑、多元散射校正(MSC)、标准正态变换(SNV)和去趋势算法(DT)等四种光谱预处理方法,以去除光谱数据中的噪声。分别使用随机森林(RF)和K最近邻(KNN)两种监督学习算法,以准确率作为评价指标,对高光谱图像进行识别。结果表明,MSC为优选的预处理方法,两种模型预测准确率分别为88.13%和86.26%。然后采用竞争性自适应重加权算法对玉米叶片光谱数据进行特征波长提取,从原始的260个波长中优选出48个特征波长。最后建立一维卷积深度学习模型进行分类,识别准确率达到99.61%,相较于传统分类模型KNN、RF、偏最小二乘判别分析(PLS-DA)、反向传播神经网络(BP)、支持向量机(SVM),提出的模型识别准确率分别提高了5.94%、6.88%、6.48%、8.27%、12.12%。高光谱技术结合深度学习模型可以更有效识别玉米大斑病,为实现玉米病害早期识别提供了一种新的思路和方法。 展开更多
关键词 一维卷积神经网络 高光谱图像 玉米 大斑病
在线阅读 下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部