Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be d...Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.展开更多
The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Far...The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.展开更多
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative ...The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.展开更多
This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbin...This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.展开更多
A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is establis...A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.展开更多
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic c...The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.展开更多
On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantificati...On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.展开更多
A fault-tolerant control law based on adaptive super-twisting sliding mode control(SMC)is designed for the attitude command tracking problem of a launch vehicle with actuator faults,considering the uncertainties arisi...A fault-tolerant control law based on adaptive super-twisting sliding mode control(SMC)is designed for the attitude command tracking problem of a launch vehicle with actuator faults,considering the uncertainties arising from unknown external disturbances,fuel consumption of the launch vehicle,and the perturbation due to the change in rotational inertia caused by tank sloshing,as well as the potential system model changes due to actuator fault and unmodeled dynamics.This control algorithm integrates the super-twisting SMC,the fuzzy logic control,and the adaptive control.First,a super-twisting sliding surface is selected to mitigate the“chattering”phenomenon inherent in SMC,ensuring that the system tracking error converges to zero within a finite time.Second,building upon this sliding surface,the fuzzy logic control is used to approximate the unknown system function,which includes fault information.Adaptive parameters are used to approach the system parameters and enhance disturbance rejection.The stability and finite-time convergence of the launch vehicle attitude tracking control system are verified by the Lyapunov method.Numerical simulations demonstrate the effectiveness and robustness of the proposed adaptive super-twisting SMC algorithm.展开更多
Anti-slip control systems are essential for railway vehicle systems with traction.In order to propose an effective anti-slip control system,adhesion information between wheel and rail can be useful.However,direct meas...Anti-slip control systems are essential for railway vehicle systems with traction.In order to propose an effective anti-slip control system,adhesion information between wheel and rail can be useful.However,direct measurement or observation of adhesion condition for a railway vehicle in operation is quite demanding.Therefore,a proportional–integral controller,which operates simultaneously with a recently proposed swarm intelligencebased adhesion estimation algorithm,is proposed in this study.This approach provides determination of the adhesion optimum on the adhesion-slip curve so that a reference slip value for the controller can be determined according to the adhesion conditions between wheel and rail.To validate the methodology,a tram wheel test stand with an independently rotating wheel,which is a model of some low floor trams produced in Czechia,is considered.Results reveal that this new approach is more effective than a conventional controller without adhesion condition estimation.展开更多
Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was pr...Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.展开更多
To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is gi...To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.展开更多
A principle of fuzzy control for tracked vehicles is proposed to make its automatic transmission system be able to adapt complex running conditions, and a model of its power train is established to be used in simulati...A principle of fuzzy control for tracked vehicles is proposed to make its automatic transmission system be able to adapt complex running conditions, and a model of its power train is established to be used in simulation. Based on the fuzzy control method, a fuzzy shift control system composed of a basic shift strategy and a fuzzy modification module is developed to improve the dynamic characteristics and cross-country maneuverability. Simulation results show that the fuzzy shift strategy can improve the shift quality under manifold driving conditions and avoid cycled shift effectively.Therefore, the proposed fuzzy shift strategies are proved to be feasible and practicable.展开更多
S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjus...S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.展开更多
A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the tr...A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the traditional fuzzy membership. Adaptive law of the adjustable parameters 6 is also determined. The directly adaptive fuzzy ACC controller is designed based on Matlab fuzzy toolbox. Matlab-Simulink is adopted to test the function of the adaptive fuzzy ACC controller. The control system is established using a 7 DOF vehicle dynamics model. Simulation results indicate that the principle of the method is correct and it performs well both in cruise and distance keeping.展开更多
基金Sponsored by the Ministerial Level Foundation(K130506)
文摘Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.61803025,62073031)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-19010)the Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing.
文摘The flapping-wing air vehicle(FWAV)is a kind of bio-inspired robot whose wings can flap up and down like bird and insect wings.A vision-based obstacle avoidance method for FWAVs is proposed in this paper.First,the Farneback algorithm is used to calculate the optical flow field of the first-view video frames taken by the on-board image transmission camera.Based on the optical flow information,a fuzzy obstacle avoidance controller is then designed to generate the FWAV steering commands.Experimental results show that the proposed obstacle avoidance method can accurately identify obstacles and achieve obstacle avoidance for FWAVs.
文摘The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver's seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspension controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver's seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver's seat and the suspension travel of the first road wheel, the ride quality is improved obviously.
基金supported by the National Science Foundation of China under Grant No.51205046
文摘This paper presents the design and implementation of an energy management system (EMS) with wavelet transform and fuzzy control for a residential micro-grid. The hybrid system in this paper consists of a wind turbine generator, photovoltaic (PV) panels, an electric vehicle (EV), and a super capacitor (SC), which is able to connect or disconnect to the main grid. The control strategy is responsible for compensating the difference between the generated power by the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into a smoothed component and a fast fluctuated component. The command approach used for fuzzy logic rules considers the state of charging (SOC) of EV, renewable production, and the load demand as parameters. Furthermore, the command rules are developed in order to ensure a reliable grid when taking into account the EV battery protection to decide the output power of the EV. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.
文摘A scheme of fuzzy logic control for the suspension system of a tracked vehicle is presented. A mechanical model for the whole body of a tracked vehicle, which is totally a fifteen-degree-of-freedom system, is established. The model includes the vertical motion, the pitch motion as well as the roll motion of the tracked vehicle. In contrast to most previous studies, the coupling effect among the vertical, the pitch and the roll motions of the suspension system of a tracked vehicle is considered simultaneously. The simulation of fuzzy logic control under road surface with random excitation shows that the acceleration, pitch angle and roll angle of suspension system can be efficiently controlled.
文摘The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles. The vibration control of suspension systems is a very important factor for modern track vehicles. A fuzzy logic control for suspension system of a track vehicle is presented. A mechanical model and a system of difft, rential equations of motion taking account of the mass of loading wheel are established. Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces. Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44 % of the original value for sine signal road surface, and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface. Therefore, the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.
基金Funded by the National Natural Science Foundation of China (NO.50135030)
文摘On the basis of analyzing the system constitution of vehicle semi-active suspension, a 4-DOF (degree of freedom) dynamic model is established. A tunable fuzzy logic controller is designed by using without quantification method and taking into account the uncertainty, nonlinearity and complexity of parameters for a vehicle suspension system. Simulation to test the performance of this controller is performed under random excitations and definite disturbances of a C grade road, and the effects of time delay and changes of system parameters on the vehicle suspension system are researched. The numerical simulation shows that the performance of the designed tunable fuzzy logic controller is effective, stable and reliable.
基金supported in part by the National Key R&D Program of China(No.2023YFB3307100)the National Natural Science Foundation of China(Nos.62227814,62203461,62203365)Shaanxi Provincial Science and Technology Innovation Team(No.2022TD-24)。
文摘A fault-tolerant control law based on adaptive super-twisting sliding mode control(SMC)is designed for the attitude command tracking problem of a launch vehicle with actuator faults,considering the uncertainties arising from unknown external disturbances,fuel consumption of the launch vehicle,and the perturbation due to the change in rotational inertia caused by tank sloshing,as well as the potential system model changes due to actuator fault and unmodeled dynamics.This control algorithm integrates the super-twisting SMC,the fuzzy logic control,and the adaptive control.First,a super-twisting sliding surface is selected to mitigate the“chattering”phenomenon inherent in SMC,ensuring that the system tracking error converges to zero within a finite time.Second,building upon this sliding surface,the fuzzy logic control is used to approximate the unknown system function,which includes fault information.Adaptive parameters are used to approach the system parameters and enhance disturbance rejection.The stability and finite-time convergence of the launch vehicle attitude tracking control system are verified by the Lyapunov method.Numerical simulations demonstrate the effectiveness and robustness of the proposed adaptive super-twisting SMC algorithm.
基金supported by University of Pardubice,Czechia,Eskisehir Technical University,Turkey,and Newcastle University,United Kingdom.
文摘Anti-slip control systems are essential for railway vehicle systems with traction.In order to propose an effective anti-slip control system,adhesion information between wheel and rail can be useful.However,direct measurement or observation of adhesion condition for a railway vehicle in operation is quite demanding.Therefore,a proportional–integral controller,which operates simultaneously with a recently proposed swarm intelligencebased adhesion estimation algorithm,is proposed in this study.This approach provides determination of the adhesion optimum on the adhesion-slip curve so that a reference slip value for the controller can be determined according to the adhesion conditions between wheel and rail.To validate the methodology,a tram wheel test stand with an independently rotating wheel,which is a model of some low floor trams produced in Czechia,is considered.Results reveal that this new approach is more effective than a conventional controller without adhesion condition estimation.
基金Supported by the National High Technology and Development Program Foundation of China under Grant No. 2002AA420090.
文摘Due to the nonlinearity and uncertainty, the precise control of underwater vehicles in some intelligent operations hasn’t been solved very well yet. A novel method of control based on desired state programming was presented, which used the technique of fuzzy neural network. The structure of fuzzy neural network was constructed according to the moving characters and the back propagation algorithm was deduced. Simulation experiments were conducted on general detection remotely operated vehicle. The results show that there is a great improvement in response and precision over traditional control, and good robustness to the model’s uncertainty and external disturbance, which has theoretical and practical value.
基金Supported by the National Natural Science Foundation of China ( 50975027 )the Fundamental Research Funds for the Central Universities( N110303007)
文摘To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.
基金Sponsored by National Key Lab Foundation of Vehicular Transmission of China(51457070105j w0514)
文摘A principle of fuzzy control for tracked vehicles is proposed to make its automatic transmission system be able to adapt complex running conditions, and a model of its power train is established to be used in simulation. Based on the fuzzy control method, a fuzzy shift control system composed of a basic shift strategy and a fuzzy modification module is developed to improve the dynamic characteristics and cross-country maneuverability. Simulation results show that the fuzzy shift strategy can improve the shift quality under manifold driving conditions and avoid cycled shift effectively.Therefore, the proposed fuzzy shift strategies are proved to be feasible and practicable.
基金Supported by the National Natural Science Foundation of China under Grant No.50579007
文摘S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.
基金Sponsored by the National Natural Science Foundation of China (501222155)
文摘A directly adaptive fuzzy algorithm is applied in vehicle adaptive cruise control system. The basic principle of the adaptive fuzzy algorithm is analyzed. The initial value of the fuzzy based vector is given by the traditional fuzzy membership. Adaptive law of the adjustable parameters 6 is also determined. The directly adaptive fuzzy ACC controller is designed based on Matlab fuzzy toolbox. Matlab-Simulink is adopted to test the function of the adaptive fuzzy ACC controller. The control system is established using a 7 DOF vehicle dynamics model. Simulation results indicate that the principle of the method is correct and it performs well both in cruise and distance keeping.