随机需求库存-路径问题(Stochastic Demand Inventory Routing Problem,SDIRP)即考虑随机需求环境下供应链中库存与配送的协调优化问题,是实施供应商管理库存策略过程中的关键所在,也是典型的NP难题之一。文章以具有硬时间窗约束的随机...随机需求库存-路径问题(Stochastic Demand Inventory Routing Problem,SDIRP)即考虑随机需求环境下供应链中库存与配送的协调优化问题,是实施供应商管理库存策略过程中的关键所在,也是典型的NP难题之一。文章以具有硬时间窗约束的随机需求库存-路径问题(Stochastic Demand Inventory Routing Problem with Hard Time Windows,SDIRPHTW)为研究对象,将SDIRPHTW分解为直接配送的随机库存-路径问题和具有硬时间窗约束的路径优化问题两个子问题,并以最小化系统运行成本和用车数量为目标,设计了一个基于(s,S)库存策略和修正C-W节约法的启发式算法。最后,通过相应的数值算例验证了算法的有效性。展开更多
研究了一种带时间窗的多车型需求可拆分揽收配送问题(Multi-Vehicle Split Pickup and Delivery Problem with Time Windows,MVSPDPTW)。针对这个问题以执行任务车辆行驶路径总长度最小为目标函数,建立了一个混合整数线性规划模型。提...研究了一种带时间窗的多车型需求可拆分揽收配送问题(Multi-Vehicle Split Pickup and Delivery Problem with Time Windows,MVSPDPTW)。针对这个问题以执行任务车辆行驶路径总长度最小为目标函数,建立了一个混合整数线性规划模型。提出了一种高效禁忌模拟退火(Tabu Simulated Annealing,TSA)算法,在算法中设计了两种新的邻域搜索算子,分别用于修复违反容量约束以及换车操作,多种算子配合的方式扩大了邻域搜索范围,避免算法陷入局部最优。此外在算法中加入了禁忌机制以及违反约束惩罚机制,实现了搜索空间的有效裁剪,提高了算法的全局寻优能力。最后基于Solomon数据集和构造的仿真数据集等对算法进行了大量仿真实验,实验验证了该算法的有效性。展开更多
文摘随机需求库存-路径问题(Stochastic Demand Inventory Routing Problem,SDIRP)即考虑随机需求环境下供应链中库存与配送的协调优化问题,是实施供应商管理库存策略过程中的关键所在,也是典型的NP难题之一。文章以具有硬时间窗约束的随机需求库存-路径问题(Stochastic Demand Inventory Routing Problem with Hard Time Windows,SDIRPHTW)为研究对象,将SDIRPHTW分解为直接配送的随机库存-路径问题和具有硬时间窗约束的路径优化问题两个子问题,并以最小化系统运行成本和用车数量为目标,设计了一个基于(s,S)库存策略和修正C-W节约法的启发式算法。最后,通过相应的数值算例验证了算法的有效性。
文摘研究了一种带时间窗的多车型需求可拆分揽收配送问题(Multi-Vehicle Split Pickup and Delivery Problem with Time Windows,MVSPDPTW)。针对这个问题以执行任务车辆行驶路径总长度最小为目标函数,建立了一个混合整数线性规划模型。提出了一种高效禁忌模拟退火(Tabu Simulated Annealing,TSA)算法,在算法中设计了两种新的邻域搜索算子,分别用于修复违反容量约束以及换车操作,多种算子配合的方式扩大了邻域搜索范围,避免算法陷入局部最优。此外在算法中加入了禁忌机制以及违反约束惩罚机制,实现了搜索空间的有效裁剪,提高了算法的全局寻优能力。最后基于Solomon数据集和构造的仿真数据集等对算法进行了大量仿真实验,实验验证了该算法的有效性。