期刊文献+
共找到833篇文章
< 1 2 42 >
每页显示 20 50 100
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测 被引量:1
1
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
基于数据驱动和机理模型的机械钻速预测 被引量:1
2
作者 郑双进 江厚顺 +4 位作者 熊梦园 孟胡 詹炜 程荣升 王立辉 《钻采工艺》 北大核心 2025年第1期78-87,共10页
为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网... 为准确预测复杂工况下的机械钻速,提出了一种基于数据驱动和机理模型的机械钻速预测方法。首先对收集的8000余条钻井数据进行斯皮尔曼和曼特尔特性分析,筛选出有效施工参数,采用变分模态分解算法(VMD)进行数据降噪,然后构建时序卷积网络结合长短期记忆网络(TCN-LSTM)作为数据驱动模型,并融合多元钻速预测机理模型,通过物理约束增强数据驱动模型的准确性与可解释性,实验表明融合模型比单一数据驱动模型或机理模型预测精度更高。随后,为进一步提升模型性能,采用了改进的蜣螂优化算法(IDBO)对TCN-LSTM模型进行优化,通过改进种群初始化和更新策略,实现了参数的高效搜索。消融实验及现场应用结果表明,对比BP、RF、LSTM、TCN模型,TCN-LSTM-IDBO模型可以实现机械钻速的精确预测,并且具有较好的泛化能力,可为钻井施工人员提供有力参考。 展开更多
关键词 机械钻速预测 时序卷积网络 长短期记忆网络 变分模态分解 蜣螂优化算法 数据分析
在线阅读 下载PDF
一种适用于混合三端直流输电线路的故障定位方法 被引量:1
3
作者 高淑萍 杨莉莉 +2 位作者 武心宇 周晋宇 宋国兵 《西安交通大学学报》 EI CAS 北大核心 2025年第1期37-46,共10页
针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉... 针对因结构复杂导致的混合三端直流输电线路故障定位困难的问题,提出了一种结合变分模态分解算法与改进卷积神经网络(CNN)的故障定位方法(VMD-CNN)。首先,利用PSCAD/EMTDC软件构建混合三端直流输电系统模型,获得故障电流数据,应用克拉克变换对其解耦,获取故障电流的线模分量;其次,对得到的线模分量进行变分模态分解(VMD),得到多个本征模态函数(IMF)分量,选取特征信息最丰富的IMF分量作为VMD-CNN模型的输入;然后,利用高效的分类模型支持向量机(SVM)判别故障发生的区域,将提取到的IMF分量作为SVM输入进行训练学习,可以准确判断出故障发生区域;最后,搭建VMD-CNN模型进行故障定位,挖掘出行波信号中蕴藏的故障信息,同时通过麻雀搜索算法优化CNN中的超参数,实现混合三端直流输电线路的精确定位。仿真结果表明:过渡电阻为100Ω,不同故障位置情况下的定位相对误差均在0.17%以内;故障位置为460 km,不同过渡电阻情况下的定位相对误差均在0.25%以内;过渡电阻为50Ω,不同故障类型情况下的相对误差均在0.3%以内。所提方法能够提升不同故障位置、过渡电阻和故障类型下的定位准确性。 展开更多
关键词 混合三端直流输电 故障定位 变分模态分解 卷积神经网络 麻雀搜索算法
在线阅读 下载PDF
基于SSA-VMD的空天地算力网络中数字孪生逻辑靶场负载预测 被引量:1
4
作者 陈浩 党政 +2 位作者 黑新宏 赵彤 张杰 《计算机工程》 北大核心 2025年第5期20-32,共13页
在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模... 在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模型通过GAF将一维负载数据转换为二维图像,利用CNN提取局部特征,使用SENet优化特征重要性,采用GRU捕捉时序特征,实现了高效的特征融合和精准预测。此外,GCSG模型采用融合麻雀搜索算法(SSA)的变分模态分解(VMD)对负载数据进行平稳化处理,进一步提高了预测性能。实验结果表明,GCSG模型在不同数据长度下均表现出优异的预测精度和稳定性,且在多步预测任务中同样表现突出。因此,GCSG模型显著提升了负载数据的预测精度,为空天地算力网络中的数字孪生系统负载预测提供了强有力的解决方案。 展开更多
关键词 空天地多层次算力网络 数字孪生 逻辑靶场 负载预测 变分模态分解
在线阅读 下载PDF
基于实测不均衡小样本的配电网高阻接地故障检测方法 被引量:1
5
作者 高伟 何文秀 +1 位作者 郭谋发 白浩 《高电压技术》 北大核心 2025年第3期1135-1144,I0001,共11页
为了应对实际配电网高阻接地故障信号微弱多变、数据稀缺等问题,提出一种基于实测不均衡小样本的高阻接地故障检测新方法。首先,使用基于压缩-激励网络的多头变分自编码器增殖模型,扩充小样本数据集。其次,将数据进行滤波处理后,分别提... 为了应对实际配电网高阻接地故障信号微弱多变、数据稀缺等问题,提出一种基于实测不均衡小样本的高阻接地故障检测新方法。首先,使用基于压缩-激励网络的多头变分自编码器增殖模型,扩充小样本数据集。其次,将数据进行滤波处理后,分别提取其时、频域特征。鉴于高阻故障特征微弱,增殖模型无法生成全面、有效的故障特征这一事实,进一步提出基于梯度调和机制的类别型特征提升(gradient harmonized mechanism-categorical boosting,GHM-Cat Boost)算法,引入梯度调和机制损失函数,让模型均衡易分样本和难分样本的关注度,从而解决过拟合问题。研究结果表明,数据增殖模型能够生成兼具仿真数据多样性与实测数据随机性特点的故障样本,提高了数据的可利用性。且所提GHM-Cat Boost模型的故障识别准确率可以达到97.21%,优于其对比分类器模型。通过测试和对比分析,验证了所提方案的有效性。 展开更多
关键词 配电网 高阻接地 故障检测 时频特征提取 变分自编码器 注意力机制 CatBoost
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
6
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
中国大陆地震流动重力观测研究综述
7
作者 胡敏章 陈石 +5 位作者 祝意青 徐新禹 周江存 郝洪涛 黄江培 刘东 《地震研究》 北大核心 2025年第4期531-549,共19页
总结了50余年来中国大陆地震流动重力观测的发展历史与现状,阐述了我国重力观测网与仪器、观测和数据处理分析方法、地震预测应用、震前重力变化机理研究等方面的进展。经过几十年的发展,围绕地震监测预报需求,我国已建成了较完备的地... 总结了50余年来中国大陆地震流动重力观测的发展历史与现状,阐述了我国重力观测网与仪器、观测和数据处理分析方法、地震预测应用、震前重力变化机理研究等方面的进展。经过几十年的发展,围绕地震监测预报需求,我国已建成了较完备的地震流动重力观测网,发展了较完善的数据处理和分析方法,在6.0级以上地震的中长期地点预测方面取得了较好应用效果,并开展了震前重力变化机理的探索,取得了较显著成效。未来,应从人才队伍、观测系统、机理研究等方面持续推进相关工作。 展开更多
关键词 重力观测网 流动重力 重力变化
在线阅读 下载PDF
藏东南植被碳利用效率的时空变化与生态网络构建 被引量:1
8
作者 卢杰 施奇 +1 位作者 韩嘉华 于强 《高原农业》 2025年第1期1-15,64,F0002,共17页
碳循环在全球生态系统中起着至关重要的作用,碳循环的反馈效应将对未来的气候变化具有重要影响。本研究以西藏地区东南部(林芝市和昌都市)为研究区域,以相应月份和年份MOD17A2HGF GPP,MOD17A2HGF PSN_(net)数据为主要数据源,探讨时空变... 碳循环在全球生态系统中起着至关重要的作用,碳循环的反馈效应将对未来的气候变化具有重要影响。本研究以西藏地区东南部(林芝市和昌都市)为研究区域,以相应月份和年份MOD17A2HGF GPP,MOD17A2HGF PSN_(net)数据为主要数据源,探讨时空变化格局,并结合气象数据对藏东南植被CUE进行相应系统分析,还建立一个生态网络来研究CUE变化对生态系统稳定性的影响。研究结果表明:月尺度上,区域CUE随生长季变化明显,变异规律在不同植被类型中有所差异。年尺度上,CUE整体呈现不显著的上升趋势,但2019-2022年CUE波动幅度加大。藏东南CUE随温度和降水变化,且温度对CUE变化更显著,相关性较强。气温和降水对藏东南区域CUE变化趋势呈现相反的现象。藏东南地区生态节点和廊道的数量逐年减少,需要添加生态垫脚石增加生态源地,减少生态廊道提高藏东南生态系统稳定。藏东南生态源区CUE的变化对整个生态系统的影响尤为显著。 展开更多
关键词 藏东南 碳利用效率 时空变化 网络构建
在线阅读 下载PDF
基于VMD-BN的液压支架电磁先导阀故障诊断方法研究
9
作者 张杰 杨爱琴 +6 位作者 许春雨 宋建成 田慕琴 宋单阳 李磊 郝振杰 马锐 《机床与液压》 北大核心 2025年第16期164-171,179,共9页
电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障... 电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障诊断方法进行研究,提出基于电流信号变分模态分解和贝叶斯网络的电液控制系统电磁先导阀故障诊断方法。采用变分模态分解算法对液压支架电磁先导阀的驱动电流信号进行分析,利用鲸鱼优化算法优化IMF个数和惩罚因子,得到多个时域和频域的分量。提取电流信号各个分量的能量熵,将其作为故障特征向量并输入所建立的贝叶斯网络中分析故障原因,利用先验概率和条件概率对故障发生的后验概率进行推理。最后,通过煤矿井下实际的故障电磁先导阀对文中所提故障诊断方法进行实验验证。结果表明:所提诊断方法可以基于电磁阀驱动电流单一信源提取能量特征差异,实现电磁先导阀的故障诊断,准确率达到90%;与现有诊断方法相比,准确性提高,实施难度降低。 展开更多
关键词 电磁先导阀 变分模态分解 能量熵 贝叶斯网络 故障诊断
在线阅读 下载PDF
融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用 被引量:2
10
作者 江雨燕 黄体臣 +1 位作者 甘如美江 王付宇 《安全与环境学报》 北大核心 2025年第1期296-309,共14页
针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode De... 针对PM_(2.5)质量浓度时间序列呈非线性难以预测的特征,为了进一步提高PM_(2.5)质量浓度预测精确度,研究通过“分而治之”先分解再预测的思想,提出一种融合二次分解的PM_(2.5)质量浓度混合预测模型(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Variational Mode Decomposition-Temporal Convolutional Network-Bi-directional Long Short-Term Memory,CEEMDAN-VMD-TCN-BiLSTM)。该模型先由递归特征消除(Recursive Feature Elimination,RFE)进行特征筛选,随后使用自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)将2013—2016年北京市PM_(2.5)质量浓度序列分解为一系列高低频模态分量并计算各分量样本熵,将样本熵由K-means聚类整合为新的分量,再由变分模态分解(Variational Mode Decomposition,VMD)方法进行二次分解。最后,将所有分量先经时间卷积网络(Temporal Convolutional Network,TCN)进行特征提取,并通过双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)预测,叠加各分量预测值即为最终预测结果。消融试验结果显示,该模型相比于单次CEEMDAN分解模型均方根误差E_(MAPE)降低19.312%,绝对误差E_(MAE)降低34.423%,百分比误差E_(MAPE)与希尔不等系数E_(TIC)分别减少40.465百分点和59.794%。由此可见,研究在引入VMD构成二次分解模型相比于单次分解模型的预测误差更小,精度更高,可为决策者在PM_(2.5)质量浓度预测与治理等工作提供一定参考。 展开更多
关键词 环境工程学 PM_(2.5)质量浓度预测 自适应噪声的完备经验模态分解 变分模态分解 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
11
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于改进GAN的人机交互手势行为识别方法
12
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
在线阅读 下载PDF
面向有向图的特征提取与表征学习研究
13
作者 谭郁松 张钰森 蹇松雷 《计算机工程与应用》 北大核心 2025年第3期234-241,共8页
图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然... 图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然而,现有方法在有效提取有向图的方向信息方面仍然存在挑战,主要依赖于节点的局部信息进行特征提取,难以充分利用有向边蕴含的方向信息。为解决这一问题,提出了一种名为变分有向图自编码器(variational directed graph autoencoder,VDGAE)的无监督表示学习方法。VDGAE通过关联矩阵来建模节点与边之间的关联关系,通过计算节点与边之间的亲和力,来重构输入有向图,从而实现无监督表征学习。基于此,VDGAE能够同时为输入有向图学习节点与边的表征,充分捕获有向图的结构信息和方向信息并嵌入至节点与边的表征向量中,使得有向图能够被更准确地表征。实验结果表明,相较于11个基准方法,VDGAE在5个数据集上节点分类任务均优于基准方法,提升了11.96%的预测精度,充分验证了其有效性。 展开更多
关键词 有向图 表征学习 关联矩阵 图神经网络 变分自编码器
在线阅读 下载PDF
基于VMD-RNN-NM的农产品期货价格分解集成预测研究
14
作者 袁宏俊 黄胜龙 胡凌云 《安徽大学学报(自然科学版)》 北大核心 2025年第5期1-10,共10页
为了捕捉高频数据中的复杂波动特征并提高期货价格的预测精度,采用了一种分解集成的策略,构建了基于变分模态分解(variational mode decomposition,简称VMD)、循环神经网络(recurrent neural network,简称RNN)和下山单纯形法(nelder-me... 为了捕捉高频数据中的复杂波动特征并提高期货价格的预测精度,采用了一种分解集成的策略,构建了基于变分模态分解(variational mode decomposition,简称VMD)、循环神经网络(recurrent neural network,简称RNN)和下山单纯形法(nelder-mead,简称NM)的分解集成预测模型.首先,利用VMD将原始信号序列分解成多个固有模态函数(intrinsic mode function,简称IMF);接着,使用RNN并结合网格搜索方法对各IMF值进行预测;最后,采用NM寻找IMFs预测值的最优系数,进行加权集成后得到最终预测结果.为了验证模型的有效性,选取农产品期货的5 min交易价格作为研究对象,实证结果表明,所提出的分解集成预测模型在预测精度方面显著优于单一预测模型,说明通过分解期货交易价格数据,分解集成模型在一定程度上能够有效捕捉多尺度特征,从而提升预测效果.同时,在对各IMF值进行汇总时,相较于传统的直接加总方法,论文为每个IMF分配不同的系数进行加权组合,更能提高模型的精度. 展开更多
关键词 变分模态分解 循环神经网络 下山单纯形法 高频数据 分解集成预测
在线阅读 下载PDF
用于矿山皮带输送机滚动轴承故障识别的Xception-CNN模型
15
作者 权国辉 邰金华 +1 位作者 张庆莉 薛春霞 《金属矿山》 北大核心 2025年第10期149-158,共10页
针对矿山皮带输送机滚动轴承故障振动信号噪声大、故障特征提取困难的问题,提出了一种结合信号优化预处理与深度学习的故障识别模型。该模型首先利用鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化的变分模态分解(Variational Mod... 针对矿山皮带输送机滚动轴承故障振动信号噪声大、故障特征提取困难的问题,提出了一种结合信号优化预处理与深度学习的故障识别模型。该模型首先利用鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化的变分模态分解(Variational Mode Decomposition,VMD)方法,对原始振动信号进行自适应降噪与重构以精准提取故障特征。然后,将重构后的信号转换为二维灰度图,作为模型的输入。最后,在识别分类阶段构建了一种改进的Extreme Inception(Xception)和卷积神经网络(Extreme Inception and Convolutional Neural Network,Xception-CNN)模型。该模型融合了Xception架构的深度可分离卷积优点以更高效地利用计算资源,同时引入了通道注意力机制以增强对关键故障特征的关注,并嵌入残差学习模块以缓解深层网络的梯度消失问题,最终实现端到端的故障状态智能分类。结果表明:Xception-CNN故障识别模型在测试集上实现了98.61%的最高识别准确率,F1分数达到0.985;在强噪声(信噪比为10 dB)干扰下,该模型准确率仍保持在98.61%,显著优于对比方法,具有较好的鲁棒性。同时,模型参数量仅为42.7 MB,单样本推理耗时仅12.3 ms,在保证高精度的同时具备良好的工程应用效率。 展开更多
关键词 滚动轴承 故障识别 信号处理 鲸鱼优化算法 变模态分解 卷积神经网络
在线阅读 下载PDF
基于STOA-VMD和改进TCN模型的水泵机组振动趋势预测
16
作者 王伟生 张宁 +5 位作者 邢磊 周保林 郭新帅 安东 高源 张孝远 《人民黄河》 北大核心 2025年第4期141-144,151,共5页
水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数... 水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数优化,实现振动信号的最优自适应分解,然后利用改进TCN对每个分解模态进行预测,最后叠加所有结果得到最终预测结果。以国内某雨水泵站水泵机组为例,基于水导轴承水平向摆度数据进行模型验证。结果表明:上述组合模型的预测值与监测值的变化趋势基本一致,其具有良好的预测能力。与STOA-VMD-TCN、VMD-EnTCN、VMD-TCN、TCN模型相比,所提出模型的E_(MA)、E_(RMS)、E_(MAP)最小,预测精度最高。 展开更多
关键词 时间卷积网络 乌燕鸥算法 变分模态分解 振动信号 趋势预测 水泵机组
在线阅读 下载PDF
煤矿井下供水管道泄漏孔径识别与定位
17
作者 杜京义 陈镇 +3 位作者 张嘉伟 李晨 高瑞 王鹏 《科学技术与工程》 北大核心 2025年第8期3296-3303,共8页
为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使... 为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。 展开更多
关键词 变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(LSTM) 模态能量熵 遗传算法(GA) 包络熵
在线阅读 下载PDF
基于改进VMD-CNN的电缆短路电流预测研究
18
作者 李练兵 代亮亮 +2 位作者 李静鹏 李光杰 杨鹏伟 《中国测试》 北大核心 2025年第8期137-146,共10页
电力系统日趋复杂,电缆短路电流由于夹杂着不同的噪声分量使数据预测与提取变得更加困难。卷积神经网络(CNN)作为一个可以识别二维形状的多层感知器,可以提取并识别短路电流,但是短路电流中的非周期分量较多,非线性度强,会使识别时间长... 电力系统日趋复杂,电缆短路电流由于夹杂着不同的噪声分量使数据预测与提取变得更加困难。卷积神经网络(CNN)作为一个可以识别二维形状的多层感知器,可以提取并识别短路电流,但是短路电流中的非周期分量较多,非线性度强,会使识别时间长,误差较大。传统的经验模态分析(EMD)数据信号预处理方法已不适用于这种复杂的场景,而注意力机制(SE)会降低内部信号的综合性,形成局部最优。因此,该文提出一种改进的变分模态分解(VMD)方法,可有效分离无关信号,实现固有信号模态分量(IMF)的精确提取,并对最终提取出来的信号滤波,减少噪声干扰,且不会减少数据的信息。将提取出来的IMF分量之和作为卷积网络(CNN)的输入,有效提高识别的精度,减少冗余时间。最后分析电缆短路层漏电的原因,将改进的VMD-CNN方法运用到具体的电缆短路场景中。根据实验结果表明,所提出改进方法的效果优于传统的EMD方法和SE注意力机制。 展开更多
关键词 短路预测 变分模态分解 信号滤波 卷积神经网络 注意力机制
在线阅读 下载PDF
基于数据分解和多模型切换的网络安全态势预测
19
作者 王娜 张鑫海 常娅明 《计算机科学与探索》 北大核心 2025年第7期1958-1968,共11页
准确的网络安全态势预测,能够给网络安全管理者提供决策依据,以便及时做好应对措施,对于维护网络安全稳定具有重要意义。网络安全态势序列通常具有复杂性和非平稳性的特点,单一模型预测存在预测精度低、泛化性差等问题。针对上述问题,... 准确的网络安全态势预测,能够给网络安全管理者提供决策依据,以便及时做好应对措施,对于维护网络安全稳定具有重要意义。网络安全态势序列通常具有复杂性和非平稳性的特点,单一模型预测存在预测精度低、泛化性差等问题。针对上述问题,提出一种基于数据分解和多模型切换的态势预测方法。引入变分模态分解方法,并与互信息熵结合,对原始态势数据集进行分解和重构,形成新的训练数据集和测试数据集,以降低数据的非平稳性,提高后续模型预测的精度。提出一种多模型切换策略,利用皮尔逊相关系数对初始模型集进行差异性分析,找到差异性大且预测效果好的模型构成候选模型集。基于距离测度,在训练数据集中找到测试数据的最近邻数据,采用投票机制找到最适合测试样本的预测模型,弥补了单一模型预测泛化性不足的缺陷。最后利用该策略获得测试数据集的态势预测结果。通过在网络入侵检测数据集NSL-KDD和国家互联网应急中心数据集上进行仿真,验证了所提方法的有效性。 展开更多
关键词 网络安全 态势预测 变分模态分解 互信息熵 多模型切换
在线阅读 下载PDF
基于金豺优化变分模态分解与时间卷积网络的过热汽温特性建模
20
作者 金秀章 赵术善 +2 位作者 畅晗 赵大勇 仲轩正 《中国电机工程学报》 北大核心 2025年第12期4759-4767,I0019,共10页
针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal opti... 针对火电机组装机容量增大且调峰频繁导致过热汽温的大惯性、大时延和高度非线性等特征愈加明显,火电机组传统比例-积分-微分控制器(proportional-integral-derivative,PID)控制效果下降的问题,提出一种基于金豺算法(golden jackal optimization,GJO)优化变分模态分解(variational mode decomposition,VMD)算法与GJO优化时间卷积神经网络(temporal convolutional network,TCN)的过热汽温系统特性模型。使用互信息(mutual information,MI)将机理分析得到的13个过热汽温特征变量进行排序并去除冗余变量;对筛选后的7个特征变量使用GJO-VMD算法进行分解,选择相关性较大的本征模态函数(intrinsic mode function,IMF)分量进行重构作为最终模型输入;最后,使用GJO-TCN建立过热汽温特性模型,并使用某660 MW燃煤电厂历史运行数据进行仿真实验。实验结果表明,基于GJO-VMD与GJO-TCN的过热汽温特性模型相较于TCN、长短期记忆网络(long short-term memory,LSTM)、GJO-LSTM,具有更高的预测精度。 展开更多
关键词 过热汽温 金豺算法 变分模态分解 时间卷积神经网络
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部