期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Underwater acoustic signal denoising model based on secondary variational mode decomposition
1
作者 Hong Yang Wen-shuai Shi Guo-hui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期87-110,共24页
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ... Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value. 展开更多
关键词 Underwater acoustic signal DENOISING variational mode decomposition Secondary decomposition Fluctuation-based dispersion entropy Cosine similarity
在线阅读 下载PDF
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:10
2
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
在线阅读 下载PDF
RFFsNet-SEI:a multidimensional balanced-RFFs deep neural network framework for specific emitter identification 被引量:2
3
作者 FAN Rong SI Chengke +1 位作者 HAN Yi WAN Qun 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期558-574,F0002,共18页
Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emi... Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber. 展开更多
关键词 specific emitter identification(SEI) deep learning(DL) radio frequency fingerprint(RFF) multidimensional feature extraction(MFE) variational mode decomposition(VMD)
在线阅读 下载PDF
An enhanced hybrid ensemble deep learning approach for forecasting daily PM_(2.5) 被引量:7
4
作者 LIU Hui DENG Da-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2074-2083,共10页
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ... PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models. 展开更多
关键词 PM_(2.5)forecasting variational mode decomposition deep neural network ensemble learning
在线阅读 下载PDF
Unintentional modulation microstructure enlargement 被引量:2
5
作者 SUN Liting WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期522-533,共12页
Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RF... Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RFF-related information is mainly in the form of unintentional modulation(UIM),which is subtle enough to be effectively imperceptible and is submerged in the intentional modulation(IM).It is necessary to minimize the influence of the IM and expand the slight differences between emitters for successful RFF.This paper proposes a UIM microstructure enlargement(UMME)method based on feature-level adaptive signal decomposition(ASD),accompanied by autocorrelation and cross-correlation analysis.The common IM part is evaluated by analyzing a newly-defined benchmark feature.Three different indexes are used to quantify the similarity,distance,and dependency of the RFF features from different devices.Experiments are conducted based on the real-world signals transmitted from 20 of the same type of radar in the same working mode.The visual image qualitatively shows the magnification of feature differences;different indicators quantitatively describe the changes in features.Compared with the original RFF feature,recognition results based on the Gaussian mixture model(GMM)classifier further validate the effectiveness of the proposed algorithm. 展开更多
关键词 radio frequency fingerprinting(RFF) unintentional modulation(UIM) adaptive signal decomposition(ASD) variational mode decomposition(VMD) similarity measurement
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部