剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长...剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。展开更多
目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深...目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深度增加而导致的不透明性和不可解释性问题,并深入挖掘与幼儿语言发展相关的眼动数据,方法采集4~6岁幼儿理解不同焦点结构的眼动数据,采用生成式人工智能模型-变分自编码器(variational autoencoder,VAE)和传统模型-多层感知器(multi-layer perceptron,MLP)识别眼动模式的发展差异并尝试生成新样本,基于灰色关联分析和混淆矩阵对生成式数据集进行解释。结果结果表明:(1)VAE生成的4岁组、5岁组和6岁组幼儿眼动数据集精度高于MINIST数据集(mixed National Institute of Standards and Technology database),且与MLP分析结果一致,具有准确性、多样性和一定的可解释性;(2)生成式眼动数据及混淆矩阵结果表明,在无焦点结构句式中,幼儿在4~5岁、5~6岁两个阶段理解水平均有提升,而宾语焦点结构和主语焦点结构的眼动特征在4~5岁变化较小,5~6岁变化较大,说明幼儿对焦点结构的理解在5岁是一个关键期,这符合幼儿焦点结构理解发展规律。结论提出的人工智能耦合分析方法,具备有效识别眼动特征发展模式的能力,并能据此生成可靠的新样本。这一方法不仅为生成式人工智能与眼动技术的融合开辟了新的途径,而且为复杂语言理解问题提供了全新的思考方向。展开更多
针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷...针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。展开更多
文摘剩余寿命(Remaining Useful Life, RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder, BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。
文摘目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深度增加而导致的不透明性和不可解释性问题,并深入挖掘与幼儿语言发展相关的眼动数据,方法采集4~6岁幼儿理解不同焦点结构的眼动数据,采用生成式人工智能模型-变分自编码器(variational autoencoder,VAE)和传统模型-多层感知器(multi-layer perceptron,MLP)识别眼动模式的发展差异并尝试生成新样本,基于灰色关联分析和混淆矩阵对生成式数据集进行解释。结果结果表明:(1)VAE生成的4岁组、5岁组和6岁组幼儿眼动数据集精度高于MINIST数据集(mixed National Institute of Standards and Technology database),且与MLP分析结果一致,具有准确性、多样性和一定的可解释性;(2)生成式眼动数据及混淆矩阵结果表明,在无焦点结构句式中,幼儿在4~5岁、5~6岁两个阶段理解水平均有提升,而宾语焦点结构和主语焦点结构的眼动特征在4~5岁变化较小,5~6岁变化较大,说明幼儿对焦点结构的理解在5岁是一个关键期,这符合幼儿焦点结构理解发展规律。结论提出的人工智能耦合分析方法,具备有效识别眼动特征发展模式的能力,并能据此生成可靠的新样本。这一方法不仅为生成式人工智能与眼动技术的融合开辟了新的途径,而且为复杂语言理解问题提供了全新的思考方向。
文摘针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。