Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the o...Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.展开更多
Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic compositio...Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.展开更多
Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes th...Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes the formation conditions of large-and medium-sized Cretaceous volcanic oil and gas reservoirs in the Bohai Sea.Research shows that the Mesozoic large intermediate-felsic lava and intermediate-felsic composite volcanic edifices in the Bohai Sea are the material basis for the formation of large-scale volcanic reservoirs.The upper subfacies of effusive facies and cryptoexplosive breccia subfacies of volcanic conduit facies of volcanic vent-proximal facies belts are favorable for large-scale volcanic reservoir formation.Two types of efficient reservoirs,characterized by high porosity and medium to low permeability,as well as medium porosity and medium to low permeability,are the core of the formation of large-and medium-sized volcanic reservoirs.The reservoir with high porosity and medium to low permeability is formed by intermediate-felsic vesicular lava or the cryptoexplosive breccia superimposed by intensive dissolution.The reservoir with medium porosity and medium to low permeability is formed by intense tectonism superimposed by fluid dissolution.Weathering and tectonic transformation are main formation mechanisms for large and medium-sized volcanic reservoirs in the study area.The low-source“source-reservoir draping type”is the optimum source-reservoir configuration relationship for large-and medium-sized volcanic reservoirs.There exists favorable volcanic facies,efficient reservoirs and source-reservoir draping configuration relationship on the periphery of Bozhong Sag,and the large intermediate-felsic lava and intermediate-felsic composite volcanic edifices close to strike-slip faults and their branch faults are the main directions of future exploration.展开更多
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
The discovery of the Tazhong-47 oilfield confirmed that it is realistic to explore oil and gas fields around igneous rocks in the Tarim basin. The favorable conditions for petroleum accumulation due to volcanic activ...The discovery of the Tazhong-47 oilfield confirmed that it is realistic to explore oil and gas fields around igneous rocks in the Tarim basin. The favorable conditions for petroleum accumulation due to volcanic activity and igneous rocks formed during the activity show in two aspects. A) The contact surface of igneous rocks and the surrounding sedimentary rocks, like a vertical unconformity surface, formed the conduit of petroleum migration. Petroleum would accumulate once it encountered a trap in which the reservoir had fine porosity and permeability. B) It formed a trap barriered by igneous rocks, or changed or cut the original trap. In addition, volcanic rocks are a kind of potential reservoir, there are many such examples in the world, and oil also shows in the Permian igneous rocks in well Zhong-1 on Tazhong uplift. Petroleum accumulation associated with volcanic activity will be a new exploring field in the Tarim basin.展开更多
The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-m...The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-marine siliceous rocks of the upper Permian Da-long Formation, Lower Yangtze region, southeastern China. Their geochemical results show that these thin-bedded siliceous rocks have a clear biologic origin, with rare to no evidence of hydrothermal influence. The values of Al/(Al + Fe + Mn) and Eu/Eu~* are 0.60-0.84(mean = 0.72) and 0.45-1.08(mean = 0.77), respectively, and Mn/Ti ratios are relatively low(mean = 0.72). The correlations of LaN/CeN, LaN/YbN, and Fe203/Ti02 with Al_2 O_3/(Al_2 O_3 + Fe_2 O_3), along with the Ce anomaly, indicate that the Da-long siliceous rocks were deposited at a transitional zone between a continental margin and the open ocean; i.e., relatively close to terrestrial sediment input and far from hydrothermal activity. The accumulation of chert is related to its unique paleogeographic location in an equatorial setting with many submarine paleo-highlands.Intense upwelling and frequent local volcanism are the main factors that promoted the development of siliceous rocks in the studied area. Ocean acidification triggered by large-scale volcanism(Large Igneous Province) during the late Permian led to extensive silica precipitation and preservation.展开更多
The content and crystal forms of pyrite and sulfur isotope composition of pyrite sulfur as well as its vertical distribution near the Permian-Triassic (P/T) boundary in the Meishan section, Changxing county, Zhejian...The content and crystal forms of pyrite and sulfur isotope composition of pyrite sulfur as well as its vertical distribution near the Permian-Triassic (P/T) boundary in the Meishan section, Changxing county, Zhejiang province, China were studied using geological, petrological, mineralogical and geochemical methods (techniques). The result showed that the genesis of abundant pyrites in bed 24e2 at the uppermost part of the Changxing Formation in the Me- ishan section may be related to volcanic activity. In bed 24e2 of the Meishan section, pyrite has its highest content of 1.84% and the sulfur isotope composition has the highest 834S value at +2.2%0 which is very similar to that of the average value of volcanic gas, There are some volcanic products such as β-quartz, siliceous cylinders and siliceous spherules which coexisted with pyrites in beds 24e2 and 24f. It can be concluded that a large quantity of volcanic ash fell into the South China Sea and was incorporated into marine sediments during the formation of limestone at the uppermost part of the Changxing Formation. The volcanic eruption with massive amounts of H2S and SO2 gas at the end of the Permian period resulted in the enrichment of HES in the South China Sea areas, The reaction of H2S with reactive iron minerals formed the mass of abundant pyrites.展开更多
Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went thr...Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went through the cooling and solidification stage (including blast fragmentation, crystallization differentiation and solidification) and the epidiagenesis stage (including metasomatism, filling, weathering and leaching, formation fluid dissolution and tectonism). Primary pores were formed at the solidification stage, which laid the foundation for the development and transformation of effective reservoirs. Secondary pores were formed at the epidiagenesis stage, with key factors as weathering and leaching, formation fluid dissolution and tectonism. In China, Mesozoic-Cenozoic volcanic rocks developed in the Songliao Basin and Bohai Bay Basin in the east and Late Paleozoic volcanic rocks developed in the Junggar Basin, Santanghu Basin and Ta- rim Basin in the west. There are primary volcanic reser- voirs and secondary volcanic reservoirs in these volcanic rocks, which have good accumulation conditions and great exploration potential.展开更多
The organic-rich shale of the Chang 7 member is the most important source rock in the Ordos basin.The sedimentary environment and the controlling factors of organic matter enrichment,however,are still in contention.In...The organic-rich shale of the Chang 7 member is the most important source rock in the Ordos basin.The sedimentary environment and the controlling factors of organic matter enrichment,however,are still in contention.In this investigation,the Yishicun outcrop,located on the south margin of the Ordos basin,has been considered for the study.X-ray diffraction,polarizing microscopy,field emission scanning electron microscopy and cathodoluminescence(CL)were used to investigate the petrological features of the organic-rich shale.The content of volcanic ash and the diameter of pyrite framboid pseudocrystals were measured to illustrate the relationship between oxygen level,ash content and the enrichment of organic matter.It has been found that the diameter of pyrite framboid pseudocrystals has a strong correlation with the total organic carbon,demonstrating that the redox status degree of the water column has a positive impact on the enrichment of organic matter.Additionally,with an increase in the ash content,the content of organic matter increased at first and then decreased,and reached a maximum when the ash content was about 6%,illustrating that the ash input has a double effect on the enrichment of organic matter.展开更多
Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed...Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.展开更多
The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formatio...The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.展开更多
Based on geochemical analysis results of core samples from the Triassic Chang 7 Member of Well Feng 75 drilled in the northwest margin of Ordos Basin,combined with geological characteristics of this region,the formati...Based on geochemical analysis results of core samples from the Triassic Chang 7 Member of Well Feng 75 drilled in the northwest margin of Ordos Basin,combined with geological characteristics of this region,the formation environment of the black shale and its control on shale oil enrichment are comprehensively studied.From the Chang 73 to Chang 71 Sub-members,the black shale have organic carbon contents decreasing from 5.70%to 3.55%,hydrogen indexes decreasing from 345 mg/g to 269 mg/g,while the oxygen indexes increasing gradually from 6 mg/g to 29 mg/g,indicating that the sedimentary environment during the depositional period of Chang 72 and Chang 73 Sub-members was anoxic.Biomarkers in the black shale change regu-larly,and have an obvious“inflection point”at the depth of 2753–2777 m in the Chang 73 Sub-member,indicating that the input of terrigenous organic matter increased.However,there is a negative drift about 2%of organic carbon isotopic composition near the“inflection point”,which is in conflict with the results of biomarker compounds.This is because the extreme thermal and anoxic events caused by continental volcanic activity in the ancient Qinling region caused negative drift of carbon isotopic composition of the black shale in the Ordos Basin.The volcanic activity caused rise of temperature,polluted air,extreme weathers,more floods and thus more input of terrigenous organic matter,and gave rise to extremely anoxic environment con-ducive to the preservation of organic matter.Terrigenous organic matter is more conducive to the formation of light oil than aquatic organic matter,so these sections in Yanchang Formation are major“sweet spots”for shale oil enrichment.展开更多
The conventional lithofacies and facies model of subaerial and marine pyroclastic rocks cannot reflect the characteristics of subaqueous volcanic edifice in lacustrine basins.In order to solve this problem,the lithofa...The conventional lithofacies and facies model of subaerial and marine pyroclastic rocks cannot reflect the characteristics of subaqueous volcanic edifice in lacustrine basins.In order to solve this problem,the lithofacies of subaqueous eruptive pyroclastic rocks is discussed and the facies model is established by taking the tuff cone of Cretaceous Huoshiling Formation in the Chaganhua area of the Changling fault depression,Songliao Basin as the research object.The results indicate that the subaqueous eruptive pyroclastic rocks in the Songliao Basin can be divided into two facies and four subfacies.The two facies are the subaqueous explosive facies and the volcanic sedimentary facies that is formed during the eruption interval.The subaqueous explosive facies can be further divided into three subfacies:gas-supported hot pyroclastic flow subfacies,water-laid density current subfacies and subaqueous fallout subfacies.The volcanic sedimentary facies consists of pyroclastic sedimentary rocks containing terrigenous clast subfacies.A typical facies model of the tuff cone that is formed by subaqueous eruptions in the Songliao Basin was established.The tuff cone is generally composed of multiple subaqueous eruption depositional units and can be divided into two facies associations:near-source facies association and far-source facies association.The complete vertical succession of one depositional unit of the near-source facies association is composed of pyroclastic sedimentary rocks containing terrigenous clast subfacies,gas-supported hot pyroclastic flow subfacies,water-laid density current subfacies and subaqueous fallout subfacies from bottom to top.The depositional unit of the far-source facies association is dominated by the subaqueous fallout subfacies and contains several thin interlayered deposits of the water-laid density current subfacies.The gas-supported hot pyroclastic flow subfacies and the pyroclastic sedimentary rocks containing terrigenous clast subfacies are favorable subaqueous eruptive facies for reservoirs in continental lacustrine basins.展开更多
The sorption of the uranium(VI) ions from aqueous solutions by diethylethanolammonium organovolcanics(Kula-TURKEY) was investigated under different experimental conditions. DEEA was used to modify the surface of basal...The sorption of the uranium(VI) ions from aqueous solutions by diethylethanolammonium organovolcanics(Kula-TURKEY) was investigated under different experimental conditions. DEEA was used to modify the surface of basaltic volcanics. The characteristic of basaltic volcanic was analyzed by XRF, SEM–EDS, FTIR, and XRD. The BET surface areas of unmodified volcanics and DEEA-modified volcanics were found as 2.265 and3.689 m^2/g, respectively. The volcanic samples were treated by using different concentrations of DEEA. The adsorption of U(VI) on natural and modified volcanics was examined as a function of the contact time, initial p H of the solution, initial U(VI) concentration, and temperature.Langmuir, Freundlich, and D–R adsorption isotherms were used to describe the adsorption. While examining the adsorption percentage and distribution coefficient, these values for unmodified volcanics were found to be25% ± 0.76 and 10.08 m L/g, while the values for the DEEA-modified volcanics were 88% ± 1.04 and 220 m L/g, respectively. The pseudo-first-order and pseudo-secondorder kinetic models were used to describe the kinetic data.In this study, it can be seen that the adsorption process is suitable for the pseudo-second-order kinetic model. Various thermodynamic parameters(ΔG°, ΔH°, and ΔS°) were calculated with the thermodynamic distribution coefficients obtained at different temperatures. The sorption process was a chemical adsorption process. The results indicated that the processes are spontaneous and endothermic.展开更多
The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and ...The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels.展开更多
Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied usin...Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.展开更多
By examining field outcrops, drilling cores and seismic data, it is concluded that the Middle and Late Permian “Emeishan basalts” in Western Sichuan Basin were developed in two large eruption cycles, and the two set...By examining field outcrops, drilling cores and seismic data, it is concluded that the Middle and Late Permian “Emeishan basalts” in Western Sichuan Basin were developed in two large eruption cycles, and the two sets of igneous rocks are in unconformable contact. The lower cycle is dominated by overflow volcanic rocks;while the upper cycle made up of pyroclastic flow volcanic breccia and pyroclastic lava is typical explosive facies accumulation. With high-quality micro-dissolution pores and ultra-fine dissolution pores, the upper cycle is a set of high-quality porous reservoir. Based on strong heterogeneity and great differences of pyroclastic flow subfacies from surrounding rocks in lithology and physical properties, the volcanic facies and volcanic edifices in Western Sichuan were effectively predicted and characterized by using seismic attribute analysis method and instantaneous amplitude and instantaneous frequency coherence analysis. The pyroclastic flow volcanic rocks are widely distributed in the Jianyang area. Centering around wells YT1, TF2 and TF8, the volcanic rocks in Jianyang area had 3edifice groups and an area of about 500 km^(2), which is the most favorable area for oil and gas exploration in volcanic rocks.展开更多
Based on outcrop, drilling, logging, geochemical analysis and seismic data, the karst landform and distribution of Permian volcanic rocks at the end of the sedimentary period of the Maokou Formation in the western Sic...Based on outcrop, drilling, logging, geochemical analysis and seismic data, the karst landform and distribution of Permian volcanic rocks at the end of the sedimentary period of the Maokou Formation in the western Sichuan Basin are examined, and their petroleum geological significance is discussed. Affected by normal faults formed in the early magmatic activities and extension tectonic background in the late sedimentary period of the Maokou Formation, a local karst shallow depression under the background of karst slope came up in the Jianyang area of the western Sichuan Basin, where the residual thickness of the Maokou Formation was thinner. Basic volcanic rocks like pyroclastic rock of eruptive facies, basalt of overflow facies, diabase porphyrite of intrusive facies and sedimentary tuff of volcanic sedimentary facies were formed after karstification. However, under the effects of faulting and karst paleogeomorphology, the volcanic rocks in different areas had different accumulation features. In the Jianyang area, with long eruption time, the volcanic rocks were thick and complex in lithology, and accumulated in the karst depressions. In the Zhongjiang-Santai area located in the karst slope, there’s no fault developed, only thin layers of basalt and sedimentary tuff turned up. The karst landform controls the build-up of thick explosive facies volcanic rocks and also the development of karst reservoirs in the Maokou Formation, and the western Sichuan area has oil and gas exploration potential in volcanic rocks and the Maokou Formation.展开更多
Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in ...Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in Sichuan Basin are studied. The study shows that central volcanic eruptive facies are developed in Sichuan Basin, and their lithological assemblages and distribution characteristics show obvious differences. The igneous rocks are mainly distributed in three regions: the southwestern part of the basin has dominantly largescale overflow facies basalts; the central and western part of the basin, Jianyang-Santai area, develop intrusive rocks, volcanic lavas(basalts)and pyroclastic rocks; and the eastern part of Sichuan, Dazhou-Liangping area, only develop diabase and basalts. Five aspects of understandings are achieved:(1) The Upper Permian igneous rocks can be divided into intrusive rocks and extrusive rocks, with the extrusive rocks as the main body. The chemical compositions of the extrusive rocks are characterized by both alkaline basalt and tholeiitic basalt, and belong to the subalkaline type of transitional basalt magma eruption.(2) There are obvious rhythmic structures vertically among overflow facies basalt, and the single rhythmic layer consists of, from bottom up, pyroclastic rocks(undeveloped), gray and dark gray porphyritic basalts(unstable), dark gray and purple microcrystalline-cryptocrystalline basalts, dark greyish green porous and amygdaloid basalts; the central volcanic eruption shows the rhythm and the vertical sequence of volcanic clastic rocks(agglomerates and breccias), volcanic lava, tuffaceous lava from bottom to top.(3) The pore types of basalt and pyroclastic rocks are diverse, mainly dissolution pore and de-vitrification micropore, but their physical properties are different. Basalt is characterized by ultra-low pore permeability, small reservoir thickness, and reservoirs are distributed in the upper and middle parts of the cycle, with poor lateral comparability. Volcanic clastic rocks are medium to high porous reservoirs(Well YT1: porosity: 8.66%?16.48%, average 13.76%) with large thickness and good reservoir quality.(4) Natural gas in basalts in southwestern basin mainly comes from Middle Permian, and natural gas in volcanic clastic rocks in central and western basin comes from Cambrian Qiongzhusi Formation.(5) Analysis of igneous reservoir-forming conditions in different areas shows that there are relatively insufficient gas sources and great differences in preservation conditions in southwestern basin.Reservoirs are poorly developed and gas-bearing is complex. The Jianyang-Santai area in the central and western part of Sichuan Basin has abundant hydrocarbon sources, developed reservoir, favorable preservation conditions and favorable gas geological conditions, and it is a favorable area for gas exploration.展开更多
This study was conducted in order to examine the influence of long-term volcanic activity on vegetative succession and growth on the slope of Sakurajima in southern Kyushu, Japan. We investigated the vegetation,depth ...This study was conducted in order to examine the influence of long-term volcanic activity on vegetative succession and growth on the slope of Sakurajima in southern Kyushu, Japan. We investigated the vegetation,depth of the volcanic ash layer, and dry density and p H of the surface soil at six places on the north-northwestern slope, 2.3–3.4 km from the Minami-dake crater, where a layer of pumice stone was deposited by the Taisho eruption in 1914. The height and diameter at breast height(DBH) of the trees increased with increasing distance from the Minami-dake crater, as did the number of individuals and species, and basal area. The Shannon–Wiener diversity index(H') demonstrates that vegetative succession is significantly affected by distance from the Minami-dake crater, as areas farther from the crater exhibited later seral stages. Comparison of the diversity index and species number of the crater region with that of the climax forest in Kagoshima indicates that vegetative growth alone cannot advance succession in the study area, as the local vegetative community is heavily influenced by the harsh environmental conditions associated with continual exposure to long-term volcanic activity. Seral stage, ash layer depth,dry density, and p H of the soil surface layer are governed by distance from the Minami-dake crater. The results of this study indicate that conditions for vegetative growth and succession improve with increasing distance from the source of constant volcanic activity. Thus, soil development is promoted by the acidification of the soil, which decreases the dry density and p H of the soil surface layer.The introduction of plant species resistant to volcanic ash and gas is recommended to promote soil development and improve the infiltration capacity of the soil.展开更多
基金the financial support from the National Natural Science Foundation of China(42172151,42090025,41811530094,and 41625009)the China Postdoctoral Science Foundation(2021M690204)the National Key Research and Development Program(2019YFA0708504&2023YFF0806200)。
文摘Globally,most organic-rich shales are deposited with volcanic ash layers.Volcanic ash,a source for many sedimentary basins,can affect the sedimentary water environment,alter the primary productivity,and preserve the organic matter(OM)through physical,chemical,and biological reactions.With an increasing number of breakthroughs in shale oil exploration in the Bohai Bay Basin in recent years,less attention has been paid to the crucial role of volcanic impact especially its influence on the OM enrichment and hydrocarbon formation.Here,we studied the petrology,mineralogy,and geochemical characteristics of the organic-rich shale in the upper submember of the fourth member(Es_(4)^(1))and the lower submember of the third member(Es_(3)^(3))of the Shahejie Formation,aiming to better understand the volcanic impact on organic-rich shale formation.Our results show that total organic carbon is higher in the upper shale intervals rich in volcanic ash with enriched light rare earth elements and moderate Eu anomalies.This indicates that volcanism promoted OM formation before or after the eruption.The positive correlation between Eu/Eu*and Post-Archean Australian Shale indicates hydrothermal activity before the volcanic eruption.The plane graph of the hydrocarbon-generating intensity(S1+S2)suggests that the heat released by volcanism promoted hydrocarbon generation.Meanwhile,the nutrients carried by volcanic ash promoted biological blooms during Es_(4)^(1 )and Es_(3)^(3) deposition,yielding a high primary productivity.Biological blooms consume large amounts of oxygen and form anoxic environments conducive to the burial and preservation of OM.Therefore,this study helps to further understand the organic-inorganic interactions caused by typical geological events and provides a guide for the next step of shale oil exploration and development in other lacustrine basins in China.
基金Supported by the National Natural Science Foundation of China(41802177,42272188,42303056)PetroChina Prospective and Basic Technological Project(2022DJ0507)+1 种基金Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04)National Natural Science of Sichuan Province(23NSFSC546)。
文摘Based on core and thin section data,the source rock samples from the Fengcheng Formation in the Mahu Sag of the Junggar Basin were analyzed in terms of zircon SIMS U-Pb geochronology,organic carbon isotopic composition,major and trace element contents,as well as petrology.Two zircon U-Pb ages of(306.0±5.2)Ma and(303.5±3.7)Ma were obtained from the first member of the Fengcheng Formation.Combined with carbon isotopic stratigraphy,it is inferred that the depositional age of the Fengcheng Formation is about 297-306 Ma,spanning the Carboniferous-Permian boundary and corresponding to the interglacial period between C4 and P1 glacial events.Multiple increases in Hg/TOC ratios and altered volcanic ash were found in the shale rocks of the Fengcheng Formation,indicating that multiple phases of volcanic activity occurred during its deposition.An interval with a high B/Ga ratio was found in the middle of the second member of the Fengcheng Formation,associated with the occurrence of evaporite minerals and reedmergnerite,indicating that the high salinity of the water mass was related to hydrothermal activity.Comprehensive analysis suggests that the warm and humid climate during the deposition of Fengcheng Formation is conducive to the growth of organic matter such as algae and bacteria in the lake,and accelerates the continental weathering,driving the input of nutrients.Volcanic activities supply a large amount of nutrients and stimulate primary productivity.The warm climate and high salinity are conducive to water stratification,leading to water anoxia that benefits organic matter preservation.The above factors interact and jointly control the enrichment of organic matter in the Fengcheng Formation of Mahu Sag.
基金Supported by the China National Offshore Oil Corporation Limited Project(2021-KT-YXKY-03)。
文摘Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes the formation conditions of large-and medium-sized Cretaceous volcanic oil and gas reservoirs in the Bohai Sea.Research shows that the Mesozoic large intermediate-felsic lava and intermediate-felsic composite volcanic edifices in the Bohai Sea are the material basis for the formation of large-scale volcanic reservoirs.The upper subfacies of effusive facies and cryptoexplosive breccia subfacies of volcanic conduit facies of volcanic vent-proximal facies belts are favorable for large-scale volcanic reservoir formation.Two types of efficient reservoirs,characterized by high porosity and medium to low permeability,as well as medium porosity and medium to low permeability,are the core of the formation of large-and medium-sized volcanic reservoirs.The reservoir with high porosity and medium to low permeability is formed by intermediate-felsic vesicular lava or the cryptoexplosive breccia superimposed by intensive dissolution.The reservoir with medium porosity and medium to low permeability is formed by intense tectonism superimposed by fluid dissolution.Weathering and tectonic transformation are main formation mechanisms for large and medium-sized volcanic reservoirs in the study area.The low-source“source-reservoir draping type”is the optimum source-reservoir configuration relationship for large-and medium-sized volcanic reservoirs.There exists favorable volcanic facies,efficient reservoirs and source-reservoir draping configuration relationship on the periphery of Bozhong Sag,and the large intermediate-felsic lava and intermediate-felsic composite volcanic edifices close to strike-slip faults and their branch faults are the main directions of future exploration.
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
基金National Key Basic Research Project(973)一Formation and Distribution of Oil and Gas of Chinese Typical Coincidence Basins(G19990433).
文摘The discovery of the Tazhong-47 oilfield confirmed that it is realistic to explore oil and gas fields around igneous rocks in the Tarim basin. The favorable conditions for petroleum accumulation due to volcanic activity and igneous rocks formed during the activity show in two aspects. A) The contact surface of igneous rocks and the surrounding sedimentary rocks, like a vertical unconformity surface, formed the conduit of petroleum migration. Petroleum would accumulate once it encountered a trap in which the reservoir had fine porosity and permeability. B) It formed a trap barriered by igneous rocks, or changed or cut the original trap. In addition, volcanic rocks are a kind of potential reservoir, there are many such examples in the world, and oil also shows in the Permian igneous rocks in well Zhong-1 on Tazhong uplift. Petroleum accumulation associated with volcanic activity will be a new exploring field in the Tarim basin.
基金supported by the National Natural Science Foundation of China (Grant No. 41702129)Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2017jcyjAX0448)+3 种基金Open Fund of Key Laboratory of Sedimentary Basin and Oil and Gas Resources, Ministry of Land and Resources (Chengdu Center, CGS) (Grant No. CDCGS2018003)State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (Grant No. 173115)the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800115)Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJXY240001)
文摘The Permian Chert Event is of great significance to understanding the geological evolution of the entire Permian; however,the origin of widespread chert formation is debated. We report new geochemical data from deep-marine siliceous rocks of the upper Permian Da-long Formation, Lower Yangtze region, southeastern China. Their geochemical results show that these thin-bedded siliceous rocks have a clear biologic origin, with rare to no evidence of hydrothermal influence. The values of Al/(Al + Fe + Mn) and Eu/Eu~* are 0.60-0.84(mean = 0.72) and 0.45-1.08(mean = 0.77), respectively, and Mn/Ti ratios are relatively low(mean = 0.72). The correlations of LaN/CeN, LaN/YbN, and Fe203/Ti02 with Al_2 O_3/(Al_2 O_3 + Fe_2 O_3), along with the Ce anomaly, indicate that the Da-long siliceous rocks were deposited at a transitional zone between a continental margin and the open ocean; i.e., relatively close to terrestrial sediment input and far from hydrothermal activity. The accumulation of chert is related to its unique paleogeographic location in an equatorial setting with many submarine paleo-highlands.Intense upwelling and frequent local volcanism are the main factors that promoted the development of siliceous rocks in the studied area. Ocean acidification triggered by large-scale volcanism(Large Igneous Province) during the late Permian led to extensive silica precipitation and preservation.
基金Projects 2006CB202201 supported by the National Key Basic Research and Development Program, 40133010 by the National Natural Science Foundationof China and 20030290002 by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The content and crystal forms of pyrite and sulfur isotope composition of pyrite sulfur as well as its vertical distribution near the Permian-Triassic (P/T) boundary in the Meishan section, Changxing county, Zhejiang province, China were studied using geological, petrological, mineralogical and geochemical methods (techniques). The result showed that the genesis of abundant pyrites in bed 24e2 at the uppermost part of the Changxing Formation in the Me- ishan section may be related to volcanic activity. In bed 24e2 of the Meishan section, pyrite has its highest content of 1.84% and the sulfur isotope composition has the highest 834S value at +2.2%0 which is very similar to that of the average value of volcanic gas, There are some volcanic products such as β-quartz, siliceous cylinders and siliceous spherules which coexisted with pyrites in beds 24e2 and 24f. It can be concluded that a large quantity of volcanic ash fell into the South China Sea and was incorporated into marine sediments during the formation of limestone at the uppermost part of the Changxing Formation. The volcanic eruption with massive amounts of H2S and SO2 gas at the end of the Permian period resulted in the enrichment of HES in the South China Sea areas, The reaction of H2S with reactive iron minerals formed the mass of abundant pyrites.
基金sponsored by the National Key Basic Research Program of China (973 Program, 2014CB239000, 2009CB219304)National Science and Technology Major Project (2011ZX05001)
文摘Characterized by complex lithology and strong heterogeneity, volcanic reservoirs in China developed three reservoir space types: primary pores, secondary pores and fractures. The formation of reservoir space went through the cooling and solidification stage (including blast fragmentation, crystallization differentiation and solidification) and the epidiagenesis stage (including metasomatism, filling, weathering and leaching, formation fluid dissolution and tectonism). Primary pores were formed at the solidification stage, which laid the foundation for the development and transformation of effective reservoirs. Secondary pores were formed at the epidiagenesis stage, with key factors as weathering and leaching, formation fluid dissolution and tectonism. In China, Mesozoic-Cenozoic volcanic rocks developed in the Songliao Basin and Bohai Bay Basin in the east and Late Paleozoic volcanic rocks developed in the Junggar Basin, Santanghu Basin and Ta- rim Basin in the west. There are primary volcanic reser- voirs and secondary volcanic reservoirs in these volcanic rocks, which have good accumulation conditions and great exploration potential.
文摘The organic-rich shale of the Chang 7 member is the most important source rock in the Ordos basin.The sedimentary environment and the controlling factors of organic matter enrichment,however,are still in contention.In this investigation,the Yishicun outcrop,located on the south margin of the Ordos basin,has been considered for the study.X-ray diffraction,polarizing microscopy,field emission scanning electron microscopy and cathodoluminescence(CL)were used to investigate the petrological features of the organic-rich shale.The content of volcanic ash and the diameter of pyrite framboid pseudocrystals were measured to illustrate the relationship between oxygen level,ash content and the enrichment of organic matter.It has been found that the diameter of pyrite framboid pseudocrystals has a strong correlation with the total organic carbon,demonstrating that the redox status degree of the water column has a positive impact on the enrichment of organic matter.Additionally,with an increase in the ash content,the content of organic matter increased at first and then decreased,and reached a maximum when the ash content was about 6%,illustrating that the ash input has a double effect on the enrichment of organic matter.
文摘Wettability of acid volcanic reservoir rock from the Hailar Oilfield, China, was studied with crude oils of different acid numbers generated from an original crude oil with an acid number of 3.05 mg KOH/g. The modifed oils and their resultant acid numbers were: A (2.09 mg KOH/g), B (0.75 mg KOH/g), C (0.47 mg KOH/g), D (0.30 mg KOH/g), and E (0.18 mg KOH/g). Contact angles and improved Amott water indexes were measured to study the effects of temperature and acid number on the wettability of the acid volcanic reservoir rock. Experimental results indicated that the wettability was not sensitive to variation in temperature when using the same oil, but the acid number of the crude oil was a key factor in changing the wettability of the rock. The Amott water index, Iw was an exponential function of the acid number, and the Amott water index increased as the acid number decreased (i.e. Amott water index exponentially decreased with the acid number increase). The Iw value of the core saturated with oil A, with an acid number of 2.09 mg KOH/g, ranged from 0.06 to 0.11, which indicated low water wetness. If the acid number of the oil decreased to 0.18 mg KOH/g, the Iw value increased to 0.95, which indicated strong water wetness. The contact angle decreased from 80~ to 35~ when the aid number decreased from 0.75 to 0.18 mg KOH/g, indicating a change towards more water wet conditions. The oil recovery by spontaneous imbibition of water also increased as the acid number of the oil decreased. As an example, at 80 ~C, the recovery of Oil A with an acid number of 2.09 mg KOH/g was only 7.6%, while Oil E with an acid number of 0.18 mg KOH/g produced 56.4%, i.e. an increase of 48.8%.
基金supported by the Major State Basic Research Development Program of China (973 Program(No.2012CB214705))the National Natural Science Foundation of China (No. 41206035)
文摘The Xujiaweizi Fault Depression is located in the northern Songliao Basin,Northeast China.The exploration results show that the most favorable natural gas reservoirs are in the volcanic rocks of the Yingcheng Formation(K 1 yc).Based on seismic interpretation,drill cores and the results of previous research,we analyzed the distribution of faults and the thickness of volcanic rocks in different periods of K 1 yc,and studied the relationship of volcanic activities and main faults.Volcanic rocks were formed in the Yingcheng period when the magma erupted along pre-existing fault zones.The volcanic activities strongly eroded the faults during the eruption process,which resulted in the structural traces in the seismic section being diffuse and unclear.The tectonic activities weakened in the study area in the depression stage.The analysis of seismic interpretation,thin section microscopy and drill cores revealed that a large number of fractures generated in the volcanic rocks were affected by later continued weak tectonic activities,which greatly improved the physical properties of volcanic reservoirs,and made the volcanic rocks of K 1 yc be favorable natural gas reservoirs.The above conclusions provide the basis to better understand the relationship of the volcanic rock distribution and faults,the mechanism of volcanic eruption and the formation of natural gas reservoirs in volcanic rocks.
基金Supported by the National Science and Technology Major Project(2016ZX05050)Scientific Research and Technology Development Program of the Research Institute of Petroleum Exploration and Development,Petrochina(No.2018YCQ02)。
文摘Based on geochemical analysis results of core samples from the Triassic Chang 7 Member of Well Feng 75 drilled in the northwest margin of Ordos Basin,combined with geological characteristics of this region,the formation environment of the black shale and its control on shale oil enrichment are comprehensively studied.From the Chang 73 to Chang 71 Sub-members,the black shale have organic carbon contents decreasing from 5.70%to 3.55%,hydrogen indexes decreasing from 345 mg/g to 269 mg/g,while the oxygen indexes increasing gradually from 6 mg/g to 29 mg/g,indicating that the sedimentary environment during the depositional period of Chang 72 and Chang 73 Sub-members was anoxic.Biomarkers in the black shale change regu-larly,and have an obvious“inflection point”at the depth of 2753–2777 m in the Chang 73 Sub-member,indicating that the input of terrigenous organic matter increased.However,there is a negative drift about 2%of organic carbon isotopic composition near the“inflection point”,which is in conflict with the results of biomarker compounds.This is because the extreme thermal and anoxic events caused by continental volcanic activity in the ancient Qinling region caused negative drift of carbon isotopic composition of the black shale in the Ordos Basin.The volcanic activity caused rise of temperature,polluted air,extreme weathers,more floods and thus more input of terrigenous organic matter,and gave rise to extremely anoxic environment con-ducive to the preservation of organic matter.Terrigenous organic matter is more conducive to the formation of light oil than aquatic organic matter,so these sections in Yanchang Formation are major“sweet spots”for shale oil enrichment.
基金Supported by the National Natural Science Foundation of China (41790453,41972313)。
文摘The conventional lithofacies and facies model of subaerial and marine pyroclastic rocks cannot reflect the characteristics of subaqueous volcanic edifice in lacustrine basins.In order to solve this problem,the lithofacies of subaqueous eruptive pyroclastic rocks is discussed and the facies model is established by taking the tuff cone of Cretaceous Huoshiling Formation in the Chaganhua area of the Changling fault depression,Songliao Basin as the research object.The results indicate that the subaqueous eruptive pyroclastic rocks in the Songliao Basin can be divided into two facies and four subfacies.The two facies are the subaqueous explosive facies and the volcanic sedimentary facies that is formed during the eruption interval.The subaqueous explosive facies can be further divided into three subfacies:gas-supported hot pyroclastic flow subfacies,water-laid density current subfacies and subaqueous fallout subfacies.The volcanic sedimentary facies consists of pyroclastic sedimentary rocks containing terrigenous clast subfacies.A typical facies model of the tuff cone that is formed by subaqueous eruptions in the Songliao Basin was established.The tuff cone is generally composed of multiple subaqueous eruption depositional units and can be divided into two facies associations:near-source facies association and far-source facies association.The complete vertical succession of one depositional unit of the near-source facies association is composed of pyroclastic sedimentary rocks containing terrigenous clast subfacies,gas-supported hot pyroclastic flow subfacies,water-laid density current subfacies and subaqueous fallout subfacies from bottom to top.The depositional unit of the far-source facies association is dominated by the subaqueous fallout subfacies and contains several thin interlayered deposits of the water-laid density current subfacies.The gas-supported hot pyroclastic flow subfacies and the pyroclastic sedimentary rocks containing terrigenous clast subfacies are favorable subaqueous eruptive facies for reservoirs in continental lacustrine basins.
基金supported by the Manisa Celal Bayar University(No.BAP 2012-005)
文摘The sorption of the uranium(VI) ions from aqueous solutions by diethylethanolammonium organovolcanics(Kula-TURKEY) was investigated under different experimental conditions. DEEA was used to modify the surface of basaltic volcanics. The characteristic of basaltic volcanic was analyzed by XRF, SEM–EDS, FTIR, and XRD. The BET surface areas of unmodified volcanics and DEEA-modified volcanics were found as 2.265 and3.689 m^2/g, respectively. The volcanic samples were treated by using different concentrations of DEEA. The adsorption of U(VI) on natural and modified volcanics was examined as a function of the contact time, initial p H of the solution, initial U(VI) concentration, and temperature.Langmuir, Freundlich, and D–R adsorption isotherms were used to describe the adsorption. While examining the adsorption percentage and distribution coefficient, these values for unmodified volcanics were found to be25% ± 0.76 and 10.08 m L/g, while the values for the DEEA-modified volcanics were 88% ± 1.04 and 220 m L/g, respectively. The pseudo-first-order and pseudo-secondorder kinetic models were used to describe the kinetic data.In this study, it can be seen that the adsorption process is suitable for the pseudo-second-order kinetic model. Various thermodynamic parameters(ΔG°, ΔH°, and ΔS°) were calculated with the thermodynamic distribution coefficients obtained at different temperatures. The sorption process was a chemical adsorption process. The results indicated that the processes are spontaneous and endothermic.
基金Supported by the National Science and Technology Major Project(2017ZX5001)
文摘The Junggar Basin is rich in oil but lacks natural gas, which is inconsistent with its geological background of natural gas. Based on the analysis of main source kitchens, and the evaluation of geological setting and controlling factors of gas accumulation, it is proposed that three significant fields for gas exploration should be emphasized. The first field is the Carboniferous volcanic rocks. The Carboniferous residual sags and large-scale reservoirs were developed in three active continental margins, i.e., the southeastern, northeastern and northwestern active continental margins. Gas accumulation is controlled by the favorable reservoir-caprock combinations composed of volcanic rocks and their superimposed lacustrine mudstones in the Upper Wuerhe Formation. Dinan, Eastern and Zhongguai uplifts are three favorable directions for natural gas exploration. The second field is the Lower combinations in the southern margin of Junggar Basin. Rows of structural traps were developed in this area with ideal preservation conditions and space-time configuration for trap-source combinations. Sets of clastic reservoirs and overpressured mudstones formed perfect reservoir-caprock combinations which are the main exploration direction for Jurassic coal-type gas reservoirs in this area. The seven large structural traps in the middle-east section are recently the most significant targets. The last field is the Central Depression. Large hydrocarbon generating centers, i.e., Mahu, Fukang and Shawan sags, were developed in this area, their source rocks were deeply buried and at highly-mature stage. Thus the Central Depression is a favorable exploration direction for Permian high-over mature gas fields(reservoirs). Great attentions should be paid to two types of targets, the deeply–buried structures and structural-lithologic traps. Based on three main gas systems, gas exploration is suggested be strengthened within three fields and on three levels.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)National Natural Science Foundation of China(4177021173,41972120)CNPC-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX020000)。
文摘Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.
基金Supported by the Scientific and Technological Major Project of the Southwest Oil and Gas Field Company (2019ZD01-03)。
文摘By examining field outcrops, drilling cores and seismic data, it is concluded that the Middle and Late Permian “Emeishan basalts” in Western Sichuan Basin were developed in two large eruption cycles, and the two sets of igneous rocks are in unconformable contact. The lower cycle is dominated by overflow volcanic rocks;while the upper cycle made up of pyroclastic flow volcanic breccia and pyroclastic lava is typical explosive facies accumulation. With high-quality micro-dissolution pores and ultra-fine dissolution pores, the upper cycle is a set of high-quality porous reservoir. Based on strong heterogeneity and great differences of pyroclastic flow subfacies from surrounding rocks in lithology and physical properties, the volcanic facies and volcanic edifices in Western Sichuan were effectively predicted and characterized by using seismic attribute analysis method and instantaneous amplitude and instantaneous frequency coherence analysis. The pyroclastic flow volcanic rocks are widely distributed in the Jianyang area. Centering around wells YT1, TF2 and TF8, the volcanic rocks in Jianyang area had 3edifice groups and an area of about 500 km^(2), which is the most favorable area for oil and gas exploration in volcanic rocks.
基金Supported by the National Major Science and Technology Project(2016ZX05007004)PetroChina Southwest Oil&Gas Field Branch Company Science and Technology Project(2019ZD01)。
文摘Based on outcrop, drilling, logging, geochemical analysis and seismic data, the karst landform and distribution of Permian volcanic rocks at the end of the sedimentary period of the Maokou Formation in the western Sichuan Basin are examined, and their petroleum geological significance is discussed. Affected by normal faults formed in the early magmatic activities and extension tectonic background in the late sedimentary period of the Maokou Formation, a local karst shallow depression under the background of karst slope came up in the Jianyang area of the western Sichuan Basin, where the residual thickness of the Maokou Formation was thinner. Basic volcanic rocks like pyroclastic rock of eruptive facies, basalt of overflow facies, diabase porphyrite of intrusive facies and sedimentary tuff of volcanic sedimentary facies were formed after karstification. However, under the effects of faulting and karst paleogeomorphology, the volcanic rocks in different areas had different accumulation features. In the Jianyang area, with long eruption time, the volcanic rocks were thick and complex in lithology, and accumulated in the karst depressions. In the Zhongjiang-Santai area located in the karst slope, there’s no fault developed, only thin layers of basalt and sedimentary tuff turned up. The karst landform controls the build-up of thick explosive facies volcanic rocks and also the development of karst reservoirs in the Maokou Formation, and the western Sichuan area has oil and gas exploration potential in volcanic rocks and the Maokou Formation.
基金Supported by the Petrochina Science and Technology Project(2016E-0601)
文摘Based on the analysis of outcrop, seismic, logging and drilling data, combined with exploration practice, the characteristics,distribution, reservoir performance and gas-bearing properties of Permian igneous rocks in Sichuan Basin are studied. The study shows that central volcanic eruptive facies are developed in Sichuan Basin, and their lithological assemblages and distribution characteristics show obvious differences. The igneous rocks are mainly distributed in three regions: the southwestern part of the basin has dominantly largescale overflow facies basalts; the central and western part of the basin, Jianyang-Santai area, develop intrusive rocks, volcanic lavas(basalts)and pyroclastic rocks; and the eastern part of Sichuan, Dazhou-Liangping area, only develop diabase and basalts. Five aspects of understandings are achieved:(1) The Upper Permian igneous rocks can be divided into intrusive rocks and extrusive rocks, with the extrusive rocks as the main body. The chemical compositions of the extrusive rocks are characterized by both alkaline basalt and tholeiitic basalt, and belong to the subalkaline type of transitional basalt magma eruption.(2) There are obvious rhythmic structures vertically among overflow facies basalt, and the single rhythmic layer consists of, from bottom up, pyroclastic rocks(undeveloped), gray and dark gray porphyritic basalts(unstable), dark gray and purple microcrystalline-cryptocrystalline basalts, dark greyish green porous and amygdaloid basalts; the central volcanic eruption shows the rhythm and the vertical sequence of volcanic clastic rocks(agglomerates and breccias), volcanic lava, tuffaceous lava from bottom to top.(3) The pore types of basalt and pyroclastic rocks are diverse, mainly dissolution pore and de-vitrification micropore, but their physical properties are different. Basalt is characterized by ultra-low pore permeability, small reservoir thickness, and reservoirs are distributed in the upper and middle parts of the cycle, with poor lateral comparability. Volcanic clastic rocks are medium to high porous reservoirs(Well YT1: porosity: 8.66%?16.48%, average 13.76%) with large thickness and good reservoir quality.(4) Natural gas in basalts in southwestern basin mainly comes from Middle Permian, and natural gas in volcanic clastic rocks in central and western basin comes from Cambrian Qiongzhusi Formation.(5) Analysis of igneous reservoir-forming conditions in different areas shows that there are relatively insufficient gas sources and great differences in preservation conditions in southwestern basin.Reservoirs are poorly developed and gas-bearing is complex. The Jianyang-Santai area in the central and western part of Sichuan Basin has abundant hydrocarbon sources, developed reservoir, favorable preservation conditions and favorable gas geological conditions, and it is a favorable area for gas exploration.
基金supported by the Forest Science&Technology Projects(No.S111215L050110)provided by the Korea Forest Service,Republic of Korea
文摘This study was conducted in order to examine the influence of long-term volcanic activity on vegetative succession and growth on the slope of Sakurajima in southern Kyushu, Japan. We investigated the vegetation,depth of the volcanic ash layer, and dry density and p H of the surface soil at six places on the north-northwestern slope, 2.3–3.4 km from the Minami-dake crater, where a layer of pumice stone was deposited by the Taisho eruption in 1914. The height and diameter at breast height(DBH) of the trees increased with increasing distance from the Minami-dake crater, as did the number of individuals and species, and basal area. The Shannon–Wiener diversity index(H') demonstrates that vegetative succession is significantly affected by distance from the Minami-dake crater, as areas farther from the crater exhibited later seral stages. Comparison of the diversity index and species number of the crater region with that of the climax forest in Kagoshima indicates that vegetative growth alone cannot advance succession in the study area, as the local vegetative community is heavily influenced by the harsh environmental conditions associated with continual exposure to long-term volcanic activity. Seral stage, ash layer depth,dry density, and p H of the soil surface layer are governed by distance from the Minami-dake crater. The results of this study indicate that conditions for vegetative growth and succession improve with increasing distance from the source of constant volcanic activity. Thus, soil development is promoted by the acidification of the soil, which decreases the dry density and p H of the soil surface layer.The introduction of plant species resistant to volcanic ash and gas is recommended to promote soil development and improve the infiltration capacity of the soil.