This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are availa...This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.展开更多
融合传统动态随机访问存储器(Dynamic Random Access Memory,DRAM)与新型非易失性内存(NonVolatile Memory,NVM)可构建平行架构或层次架构的异构内存系统.平行架构的异构内存系统往往需要通过页迁移技术把热点数据从NVM迁移到DRAM以提...融合传统动态随机访问存储器(Dynamic Random Access Memory,DRAM)与新型非易失性内存(NonVolatile Memory,NVM)可构建平行架构或层次架构的异构内存系统.平行架构的异构内存系统往往需要通过页迁移技术把热点数据从NVM迁移到DRAM以提高访存性能,然而在操作系统中实现热页监测和迁移会带来巨大的软件性能开销.硬件实现的层次架构由于增加了访存层次,对于访存局部性差的大数据应用反而增加了访存延迟.为此,本文提出可重构的异构内存架构,可以运行时在平行和层次架构间进行转换以动态适配不同应用的访存特性.设计了基于新型指令集架构RISC-V(Reduced Instruction Set Computing-V)的DRAM/NVM异构内存控制器,利用少量硬件计数器实现了访存踪迹统计和分析,并实现了DRAM和NVM物理页间的动态映射和高效迁移机制.实验表明,DRAM/NVM异构内存控制器可提高43%的应用性能.展开更多
为解决数据混合存储导致精准查找速度慢、数据未分类分级管理造成安全治理难等问题,构建基于主从多链的数据分类分级访问控制模型,实现数据的分类分级保障与动态安全访问。首先,构建链上链下混合式可信存储模型,以平衡区块链面临的存储...为解决数据混合存储导致精准查找速度慢、数据未分类分级管理造成安全治理难等问题,构建基于主从多链的数据分类分级访问控制模型,实现数据的分类分级保障与动态安全访问。首先,构建链上链下混合式可信存储模型,以平衡区块链面临的存储瓶颈问题;其次,提出主从多链架构,并设计智能合约,将不同隐私程度的数据自动存储于从链;最后,以基于角色的访问控制为基础,构建基于主从多链与策略分级的访问控制(MCLP-RBAC)机制并给出具体访问控制流程设计。在分级访问控制策略下,所提模型的吞吐量稳定在360 TPS(Transactions Per Second)左右。与BC-BLPM方案相比,发送速率与吞吐量之比达到1∶1,具有一定优越性;与无访问策略相比,内存消耗降低35.29%;与传统单链结构相比,内存消耗平均降低52.03%;与数据全部上链的方案相比,平均存储空间缩小36.32%。实验结果表明,所提模型能有效降低存储负担,实现分级安全访问,具有高扩展性,适用于多分类数据的管理。展开更多
基金supported by the National Natural Science Foundation of China (6057408860874053)
文摘This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.
文摘融合传统动态随机访问存储器(Dynamic Random Access Memory,DRAM)与新型非易失性内存(NonVolatile Memory,NVM)可构建平行架构或层次架构的异构内存系统.平行架构的异构内存系统往往需要通过页迁移技术把热点数据从NVM迁移到DRAM以提高访存性能,然而在操作系统中实现热页监测和迁移会带来巨大的软件性能开销.硬件实现的层次架构由于增加了访存层次,对于访存局部性差的大数据应用反而增加了访存延迟.为此,本文提出可重构的异构内存架构,可以运行时在平行和层次架构间进行转换以动态适配不同应用的访存特性.设计了基于新型指令集架构RISC-V(Reduced Instruction Set Computing-V)的DRAM/NVM异构内存控制器,利用少量硬件计数器实现了访存踪迹统计和分析,并实现了DRAM和NVM物理页间的动态映射和高效迁移机制.实验表明,DRAM/NVM异构内存控制器可提高43%的应用性能.
文摘为解决数据混合存储导致精准查找速度慢、数据未分类分级管理造成安全治理难等问题,构建基于主从多链的数据分类分级访问控制模型,实现数据的分类分级保障与动态安全访问。首先,构建链上链下混合式可信存储模型,以平衡区块链面临的存储瓶颈问题;其次,提出主从多链架构,并设计智能合约,将不同隐私程度的数据自动存储于从链;最后,以基于角色的访问控制为基础,构建基于主从多链与策略分级的访问控制(MCLP-RBAC)机制并给出具体访问控制流程设计。在分级访问控制策略下,所提模型的吞吐量稳定在360 TPS(Transactions Per Second)左右。与BC-BLPM方案相比,发送速率与吞吐量之比达到1∶1,具有一定优越性;与无访问策略相比,内存消耗降低35.29%;与传统单链结构相比,内存消耗平均降低52.03%;与数据全部上链的方案相比,平均存储空间缩小36.32%。实验结果表明,所提模型能有效降低存储负担,实现分级安全访问,具有高扩展性,适用于多分类数据的管理。