A key to understand Immanuel Kant's philosophy is his views on humanity,and the cornerstone of Kant’s philosophy is the idea that“beauty is a symbol of morality”.From the perspective of his views on humanity,we...A key to understand Immanuel Kant's philosophy is his views on humanity,and the cornerstone of Kant’s philosophy is the idea that“beauty is a symbol of morality”.From the perspective of his views on humanity,we can have a deep understanding of Kant*s analysis of beauty and the sublime and his aesthetics.The focus of Kant's aesthetics is the realization of human freedom and the sublime,and this is of special humanistic feature.展开更多
基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(...基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(multi-scale feature fusion and edge and point enhancement-camera radar net),一种用于3D目标检测的相机与毫米波雷达融合感知算法,利用边缘特征和点云提高深度预测的精度,实现多视角图像向BEV特征的精确转换。同时,引入多尺度可变形大核注意力机制进行模态融合,解决因不同传感器特征差异过大导致的错位。在nuScenes开源数据集上的实验结果表明,与基准网络相比,mAP提升2.17%、NDS提升1.93%、mATE提升2.58%、mAOE提升8.08%、mAVE提升2.13%,该算法可有效提高车辆对路面上运动障碍物的感知能力,具有实用价值。展开更多
In recent years,the concept of digital human has attracted widespread attention from all walks of life,and the modelling of high-fidelity human bodies,heads,and hands has been intensively studied.This paper focuses on...In recent years,the concept of digital human has attracted widespread attention from all walks of life,and the modelling of high-fidelity human bodies,heads,and hands has been intensively studied.This paper focuses on head modelling and proposes a generic head parametric model based on neural radiance fields.Specifically,we first use face recognition networks and 3D facial expression database FaceWarehouse to parameterize identity and expression semantics,respectively,and use both as conditional inputs to build a neural radiance field for the human head,thereby improving the head model’s representation ability while ensuring editing capabilities for the identity and expression of the rendered results;then,through a combination of volume rendering and neural rendering,the 3D representation of the head is rapidly rendered into the 2D plane,producing a high-fidelity image of the human head.Thanks to the well-designed loss functions and good implicit representation of the neural radiance field,our model can not only edit the identity and expression independently,but also freely modify the virtual camera position of the rendering results.It has excellent multi-view consistency,and has many applications in novel view synthesis,pose driving and more.展开更多
The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
Agile Web Development Framework(AWDF)开发框架是作者提出的一种新型的Web开发框架,它基于MVC模型2,用于Web应用的开发。通过与struts的比较提出了AWDF的优势所在,并对AWDF的设计思想、框架模式、各个组成部分的定义功能及责任作了详...Agile Web Development Framework(AWDF)开发框架是作者提出的一种新型的Web开发框架,它基于MVC模型2,用于Web应用的开发。通过与struts的比较提出了AWDF的优势所在,并对AWDF的设计思想、框架模式、各个组成部分的定义功能及责任作了详细的描述。此构架的优势在于与其它框架相比,它的简单易用使得降低系统的复杂度和系统的开发成本成为可能;并且AWDF框架采用可复用的数据验证的机制来提高系统的可复用性,从而使得在大型系统的开发中使用此构架成为可能。展开更多
基金Key project of Humanities and Social Sciences of Anhui provincial Education Department(SK2017A0380)General project of Humanities and Social Sciences of Anhui provincial Education Department(SKHS2016B08)School-level Research Platform(KYPT201816)
文摘A key to understand Immanuel Kant's philosophy is his views on humanity,and the cornerstone of Kant’s philosophy is the idea that“beauty is a symbol of morality”.From the perspective of his views on humanity,we can have a deep understanding of Kant*s analysis of beauty and the sublime and his aesthetics.The focus of Kant's aesthetics is the realization of human freedom and the sublime,and this is of special humanistic feature.
文摘基于BEV(bird’s eye view)多传感器融合的自动驾驶感知算法近年来取得重大进展,持续促进自动驾驶的发展。在多传感器融合感知算法研究中,多视角图像向BEV视角的转换和多模态特征融合一直是BEV感知算法的重点和难点。笔者提出MSEPE-CRN(multi-scale feature fusion and edge and point enhancement-camera radar net),一种用于3D目标检测的相机与毫米波雷达融合感知算法,利用边缘特征和点云提高深度预测的精度,实现多视角图像向BEV特征的精确转换。同时,引入多尺度可变形大核注意力机制进行模态融合,解决因不同传感器特征差异过大导致的错位。在nuScenes开源数据集上的实验结果表明,与基准网络相比,mAP提升2.17%、NDS提升1.93%、mATE提升2.58%、mAOE提升8.08%、mAVE提升2.13%,该算法可有效提高车辆对路面上运动障碍物的感知能力,具有实用价值。
文摘In recent years,the concept of digital human has attracted widespread attention from all walks of life,and the modelling of high-fidelity human bodies,heads,and hands has been intensively studied.This paper focuses on head modelling and proposes a generic head parametric model based on neural radiance fields.Specifically,we first use face recognition networks and 3D facial expression database FaceWarehouse to parameterize identity and expression semantics,respectively,and use both as conditional inputs to build a neural radiance field for the human head,thereby improving the head model’s representation ability while ensuring editing capabilities for the identity and expression of the rendered results;then,through a combination of volume rendering and neural rendering,the 3D representation of the head is rapidly rendered into the 2D plane,producing a high-fidelity image of the human head.Thanks to the well-designed loss functions and good implicit representation of the neural radiance field,our model can not only edit the identity and expression independently,but also freely modify the virtual camera position of the rendering results.It has excellent multi-view consistency,and has many applications in novel view synthesis,pose driving and more.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.
文摘Agile Web Development Framework(AWDF)开发框架是作者提出的一种新型的Web开发框架,它基于MVC模型2,用于Web应用的开发。通过与struts的比较提出了AWDF的优势所在,并对AWDF的设计思想、框架模式、各个组成部分的定义功能及责任作了详细的描述。此构架的优势在于与其它框架相比,它的简单易用使得降低系统的复杂度和系统的开发成本成为可能;并且AWDF框架采用可复用的数据验证的机制来提高系统的可复用性,从而使得在大型系统的开发中使用此构架成为可能。