合成孔径雷达能够全天时,全天候产生高分辨率SAR图像。SAR图像中由于工作环境及成像机制会受到噪声影响,大多数去噪算法去除SAR图像噪声时会出现噪声去除不完全,图像信息损失的问题。针对这一问题,提出了一种基于U-Net网络结构改进的SA...合成孔径雷达能够全天时,全天候产生高分辨率SAR图像。SAR图像中由于工作环境及成像机制会受到噪声影响,大多数去噪算法去除SAR图像噪声时会出现噪声去除不完全,图像信息损失的问题。针对这一问题,提出了一种基于U-Net网络结构改进的SAR图像去噪算法。该算法采用VGG16网络结构作为特征提取模块,对SAR图像进行去噪的下采样操作,提取SAR图像中的关键特征,保留去噪后SAR图像的细节信息;采用修改的UNet上采样网络结构,让包含特征的低分辨率图片在保留特征的同时变为高分辨率,并通过特征融合使得去噪后SAR图像恢复更多细节,实现SAR图像的智能去噪。选择峰值信噪比(Peak Signal to Noise Ratio,PSNR)和结构相似性指数(Structural Similarity Index Measure,SSIM)作为实验的评价指标。仿真实验结果表明,该方法对添加噪声的SAR图像进行去噪,其主观视觉效果及客观评价指标PSNR和SSIM相比于实验对照去噪方法较高。所提方法兼顾了SAR图像噪点的去除和细节的保留,去噪获取的SAR图像具备更清晰的细节特征,具有较强的SAR图像去噪现实意义。展开更多
文摘合成孔径雷达能够全天时,全天候产生高分辨率SAR图像。SAR图像中由于工作环境及成像机制会受到噪声影响,大多数去噪算法去除SAR图像噪声时会出现噪声去除不完全,图像信息损失的问题。针对这一问题,提出了一种基于U-Net网络结构改进的SAR图像去噪算法。该算法采用VGG16网络结构作为特征提取模块,对SAR图像进行去噪的下采样操作,提取SAR图像中的关键特征,保留去噪后SAR图像的细节信息;采用修改的UNet上采样网络结构,让包含特征的低分辨率图片在保留特征的同时变为高分辨率,并通过特征融合使得去噪后SAR图像恢复更多细节,实现SAR图像的智能去噪。选择峰值信噪比(Peak Signal to Noise Ratio,PSNR)和结构相似性指数(Structural Similarity Index Measure,SSIM)作为实验的评价指标。仿真实验结果表明,该方法对添加噪声的SAR图像进行去噪,其主观视觉效果及客观评价指标PSNR和SSIM相比于实验对照去噪方法较高。所提方法兼顾了SAR图像噪点的去除和细节的保留,去噪获取的SAR图像具备更清晰的细节特征,具有较强的SAR图像去噪现实意义。