Thyristor valve is one of the key equipments for ultra high voltage direct current(UHVDC) power transmission projects.Before being installed on site,they need to be tested in a laboratory in order to verify their oper...Thyristor valve is one of the key equipments for ultra high voltage direct current(UHVDC) power transmission projects.Before being installed on site,they need to be tested in a laboratory in order to verify their operational performance to satisfy the technical specification of project related.Test facilities for operational tests of thyristor valves are supposed to enable to undertake more severe electrical stresses than those being applied in the thyristor valves under test(test objects).On the other hand,the stresses applied into the test objects are neither higher nor lower than specified by the specification,because inappropriate stresses applied would result in incorrect evaluation of performance on the test objects,more seriously,would cuase the damage of test objects with expensive cost losing.Generally,the process of operational tests is complicated and performed in a complex synthetic test circuit(hereafter as STC),where there are a lot of sensors used for measuring,monitoring and protection on line to ensure that the test circuit functions in good condition.Therefore,the measuring systems embedded play a core role in STC,acting like "eyes".Based on the first project of building up a STC in China,experience of planning measuring systems is summarized so as to be referenced by related engineers.展开更多
The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vi...The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vibration on the valve casing by installing a valve flexibly on a vibrating surface,i.e.,by introducing a material with known stiffness and damping characteristics between the valve casing and the vibrating surface-a steel spring package or special cushions made of elastomer material or of oilresistant rubber.The article also demonstrates that elastomer cushions placed inside the valve casingbetween the casing and the centering springs-can be used as a supplementary or alternative solution in the analyzed method for mitigating the transfer of vibrations.By using materials with appropriately selected elastic and dissipative properties,the effectiveness of vibro-isolation can be increased.The presented theoretical analyzes by linear and non-linear mathematical models have been verified experimentally.展开更多
Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, ela...Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.展开更多
With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performan...With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performance of thyristor valves particularly designed for HVDC project plays an important role in the handover of products between the manufacturer and the client.Conventional test facilities based on philosophy of direct test cannot meet the requirements for modern thyristor valves.New test facilities with high ratings are necessarily built based on philosophy of synthetic test.Over the conventional direct test circuit,the later is an economical and feasible solution with less financial investment and higher test capability.However,the equivalency between the synthetic test and the direct test should be analyzed technically in order to make sure that the condition of verification test in a synthetic test circuit should satisfy the actual operation condition of thyristor valves existing in a real HVDC project,just as in a direct test circuit.Equivalency analysis is focused in this paper,covering the scope of thyristor valves' steady state,and transient state.On the basis of the results achieved,a synthetic test circuit of 6 500 A/50 kV for operational tests of thyristor valves used for up to UHVDC project has newly been set up and already put into service in Xi'an High Voltage Apparatus Research Institute Co.,Ltd.(XIHARI),China.Some of the results have been adopted also by a new national standard of China.展开更多
In this paper , a novel Magnetorheological ( MR) valve with a tunable resistance minimum 1 mm to maximum 2 mm was designed. In addition , a mathematical model of the pressure drop betweenthe inlet port and the outle...In this paper , a novel Magnetorheological ( MR) valve with a tunable resistance minimum 1 mm to maximum 2 mm was designed. In addition , a mathematical model of the pressure drop betweenthe inlet port and the outlet port for the proposed MR valve was developed. Magnetic simulation was and combined with the pressure drop calculation using the derived MR valve model. The valve geometric parameters , such as the valve body thickness , the winding groove depth and the large end of radiusof the valve sleeve on the valve performance were analyzed. The relevant results will provide the theoretical basisfor the MR valve size design and structure optimization.展开更多
A hydraulic position system was designed employing two high speed On/Off solenoid valves with PWM(Pulse width modulation) technique and using LQ(Linear Quadratic) optimization principle. Based on the system, the parts...A hydraulic position system was designed employing two high speed On/Off solenoid valves with PWM(Pulse width modulation) technique and using LQ(Linear Quadratic) optimization principle. Based on the system, the parts of system can be formulated with equations. According to equations, the mathematical model of the system was established. By simulation, the corresponding LQ optimal controller was designed and the PWM signals were generated. The comparison of the simulation and experiment results show that LQ optimal control method with PWM technique employing high speed On/Off solenoid valve can provide better system performance and a high position precision is obtained.展开更多
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated...Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different type...Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three.展开更多
A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibrati...A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibration.A new spin valve was designed in order to fulfill dynamic state requirements of the oscillation cylinder.Parametric analysis was carried out by establishing mathematic model.Then,the relationships among the structure of valve port and the frequency,amplitude,output shock force of the cylinder were researched.An experimental device of the electrohydraulic exciter was established to validate the theoretical results.The signals were acquired by AVANT dynamic signal analyser of vibration.The results show that new tamping device can satisfy all kinds of complex working conditions with the flexible adjustment of frequency and amplitude.展开更多
Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this...Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.展开更多
Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing me...Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the spool valve, the precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke and thermal-...To increase the efficiency and reliability of the thermodynamics analysis of the spool valve, the precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke and thermal-hydraulic bond graph based on the conservation of mass and energy were introduced. Subsequently, the connection rule for the bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing the spool valve, the lumped parameter for mathematical model of the system was given. At last, the reliability of the mathematical model of the flow area and the thermal-hydraulic system for the sloping U-shape notch orifice on the spool were demonstrated by the test. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the process...Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.展开更多
基金Project Supported by National Development and Reform Commission(No.[2006]2709)
文摘Thyristor valve is one of the key equipments for ultra high voltage direct current(UHVDC) power transmission projects.Before being installed on site,they need to be tested in a laboratory in order to verify their operational performance to satisfy the technical specification of project related.Test facilities for operational tests of thyristor valves are supposed to enable to undertake more severe electrical stresses than those being applied in the thyristor valves under test(test objects).On the other hand,the stresses applied into the test objects are neither higher nor lower than specified by the specification,because inappropriate stresses applied would result in incorrect evaluation of performance on the test objects,more seriously,would cuase the damage of test objects with expensive cost losing.Generally,the process of operational tests is complicated and performed in a complex synthetic test circuit(hereafter as STC),where there are a lot of sensors used for measuring,monitoring and protection on line to ensure that the test circuit functions in good condition.Therefore,the measuring systems embedded play a core role in STC,acting like "eyes".Based on the first project of building up a STC in China,experience of planning measuring systems is summarized so as to be referenced by related engineers.
文摘The paper discusses minimizing the effect of external mechanical vibration on hydraulic valves in different military hydraulic drive systems.The current research work presents an analysis of the potential to reduce vibration on the valve casing by installing a valve flexibly on a vibrating surface,i.e.,by introducing a material with known stiffness and damping characteristics between the valve casing and the vibrating surface-a steel spring package or special cushions made of elastomer material or of oilresistant rubber.The article also demonstrates that elastomer cushions placed inside the valve casingbetween the casing and the centering springs-can be used as a supplementary or alternative solution in the analyzed method for mitigating the transfer of vibrations.By using materials with appropriately selected elastic and dissipative properties,the effectiveness of vibro-isolation can be increased.The presented theoretical analyzes by linear and non-linear mathematical models have been verified experimentally.
文摘Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.
基金Project Supported by National Development and Reform Commission(No.[2006]2709)
文摘With the growth of capacity of high voltage direct current(HVDC) transmission lines,the ratings of thyristor valves,which are one of the most critical equipments,are getting higher and higher.Verification of performance of thyristor valves particularly designed for HVDC project plays an important role in the handover of products between the manufacturer and the client.Conventional test facilities based on philosophy of direct test cannot meet the requirements for modern thyristor valves.New test facilities with high ratings are necessarily built based on philosophy of synthetic test.Over the conventional direct test circuit,the later is an economical and feasible solution with less financial investment and higher test capability.However,the equivalency between the synthetic test and the direct test should be analyzed technically in order to make sure that the condition of verification test in a synthetic test circuit should satisfy the actual operation condition of thyristor valves existing in a real HVDC project,just as in a direct test circuit.Equivalency analysis is focused in this paper,covering the scope of thyristor valves' steady state,and transient state.On the basis of the results achieved,a synthetic test circuit of 6 500 A/50 kV for operational tests of thyristor valves used for up to UHVDC project has newly been set up and already put into service in Xi'an High Voltage Apparatus Research Institute Co.,Ltd.(XIHARI),China.Some of the results have been adopted also by a new national standard of China.
基金supported by National Natural Science Foundation of China (No.51165005,51475165)
文摘In this paper , a novel Magnetorheological ( MR) valve with a tunable resistance minimum 1 mm to maximum 2 mm was designed. In addition , a mathematical model of the pressure drop betweenthe inlet port and the outlet port for the proposed MR valve was developed. Magnetic simulation was and combined with the pressure drop calculation using the derived MR valve model. The valve geometric parameters , such as the valve body thickness , the winding groove depth and the large end of radiusof the valve sleeve on the valve performance were analyzed. The relevant results will provide the theoretical basisfor the MR valve size design and structure optimization.
文摘A hydraulic position system was designed employing two high speed On/Off solenoid valves with PWM(Pulse width modulation) technique and using LQ(Linear Quadratic) optimization principle. Based on the system, the parts of system can be formulated with equations. According to equations, the mathematical model of the system was established. By simulation, the corresponding LQ optimal controller was designed and the PWM signals were generated. The comparison of the simulation and experiment results show that LQ optimal control method with PWM technique employing high speed On/Off solenoid valve can provide better system performance and a high position precision is obtained.
基金Project(20080431380) supported by China Postdoctoral Science Foundation
文摘Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
文摘Cavitation is a destructive phenomenon in control valves.In order to delay cavitation,a multi-series of perforated cylindrical plates,called trims,are used.Previously,the effects of orifice diameter and different types of trims have been investigated.In this study,by numerical analysis,a globe control valve was investigated by employing four different cases(without trim,with one trim,with two and three trims)and the impact of the number of these trims on the intensity,formation region and the initiation point of cavitation was analyzed.It was found that the addition of one stage or two stages of trims reduces the intensity and delays the onset of cavitation,relative to the valve without trim.However,no significant differences in terms of intensity and initiation point of cavitation were observed in the cases where two or three trims were used.Therefore,due to the high cost of producing the trims,and the severe drop in flow coefficient,it is not economically and technically justified to increase the number of trims to more than three.
基金Projects(50975252,51275499)supported by the National Natural Science Foundation of ChinaProject(2013CB035404)supported by the National Basic Research Program of ChinaProject(GZKF-201312)supported by Open Foundation of the State Key Laboratory of Fluid Power Transmission and Control,China
文摘A new tamping device which is driven by an electrohydraulic exciter was proposed to overcome the limitations of mechanically driven devices.The double-rod oscillation cylinder drives the tamping arm to realize vibration.A new spin valve was designed in order to fulfill dynamic state requirements of the oscillation cylinder.Parametric analysis was carried out by establishing mathematic model.Then,the relationships among the structure of valve port and the frequency,amplitude,output shock force of the cylinder were researched.An experimental device of the electrohydraulic exciter was established to validate the theoretical results.The signals were acquired by AVANT dynamic signal analyser of vibration.The results show that new tamping device can satisfy all kinds of complex working conditions with the flexible adjustment of frequency and amplitude.
文摘Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.
基金Project(51275542) supported by the National Natural Science Foundation of Chinaproject(CDJXS12110010) supported by the Fundamental Research Funds for the Central Universities of China
文摘Based on the working principle and the damping characteristic of hydraulic shock absorber, a fluid structure interaction method was presented, which was used to analyze the microcosmic and high-frequency processing mechanism of fluid structure interaction between circulation valve and liquid of hydraulic shock absorber. The fluid mesh distortion was controlled by the CEL language, and the fluid struc^tre interaction mathematical model was established. The finite element model was established by ANSYS CFX software and was analyzed by dynamic mesh technique. The local sensitive computational area was meshed by prismatic grid, which could reduce the negative volume problem during the simulation. The circulation valve and liquid of hydraulic shock absorber were simulated and analyzed under the condition of sinusoidal inlet velocity loads. Flow characteristic and dynamics characteristic were obtained. The pressure distribution and the displacement of circulation value were obtained, and the acceleration curve of circulation valve was simulated and analyzed. The conformity of the final simulation results with the experimental datum indicates that this method is accurate and reliable to analyze the dynamics characteristic between circulation valve and liquid of hydraulic shock absorber, which can provide a theoretical foundation for optimizing hydraulic shock absorber in the future.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the spool valve, the precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke and thermal-hydraulic bond graph based on the conservation of mass and energy were introduced. Subsequently, the connection rule for the bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing the spool valve, the lumped parameter for mathematical model of the system was given. At last, the reliability of the mathematical model of the flow area and the thermal-hydraulic system for the sloping U-shape notch orifice on the spool were demonstrated by the test. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
基金Projects(51505289,51275123)supported by the National Natural Science Foundation of China
文摘Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.