Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that t...The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that the failure threshold is a fixed value,as they have difficulty in reflecting the random variation of the failure threshold. In connection with the inadequacies of the existing research, an in-depth analysis is carried out to study the effect of the random failure threshold(RFT) on the prediction results for the RUL. First, a nonlinear degradation model with unit-to-unit variability and measurement error is established based on the nonlinear Wiener process. Second, the expectation-maximization(EM) algorithm is used to solve the estimated values of the parameters of the prior degradation model, and the Bayesian method is used to iteratively update the posterior distribution of the random coefficients. Then, the effects of three types of RFT constraint conditions on the prediction results for the RUL are analyzed, and the probability density function(PDF) of the RUL is derived. Finally,the degradation data of aero-turbofan engines are used to verify the correctness and advantages of the method.展开更多
As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenanc...As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.展开更多
Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipmen...Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.展开更多
To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and t...To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and these parts or components are working in the same environment, thus the degradations of these parts or components will be influenced by common factors. To describe such a phenomenon in degradations, a multi-degradation model with public noise is proposed. To identify the degradation states and the unknown parameters, an iterative estimation method is proposed by using the Kalman filter and the expectation maximization(EM) algorithm. Next, with known thresholds,the RUL of each degradation can be predicted by using the first hitting time(FHT). In addition, the RUL of the whole system can be obtained by a Copula function. Finally, a practical case is used to demonstrate the method proposed.展开更多
Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a n...Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.展开更多
Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degrad...Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.展开更多
Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of th...Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.展开更多
A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work...A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work modes, system configuration, dynamic probabilities and degeneration of components,as well as spacecraft dynamics and kinematics. By introducing the frame of DFT, the system is classified into several layers, and the problem of state combination explosion is artfully overcome.An improved dynamic reliability model(DRM) based on the Nelson hypothesis is investigated to improve the defect of cumulative failure probability(CFP), which is used to address the failure probability of components in the SHA model. The simulation using the Monte-Carlo method is finally conducted on two satellites, which are deployed with the same multi-gyro subsystem but run on different orbits. The results show that the predicted useful life of the attitude control system(ACS) with consideration of abrupt failure,degradation, and running environment is quite different between the two satellites.展开更多
Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL es...Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL estimation approach under the collaboration between Bayesian updating and expectation maximization (EM) algorithm. Firstly, we utilize an exponential-like degradation model to describe equipment degradation process and update stochastic parameters in the model via Bayesian approach. Based on the Bayesian updating results, both probability distribution of the RUL and its point estimation can be derived. Secondly, based on the monitored degradation data to date, we give a parameter estimation approach for non-stochastic parameters in the degradation model and prove that the obtained estimation is unique and optimal in each iteration. Finally, a numerical example and a practical case study for global positioning system (GPS) receiver are provided to show that the presented approach can model degradation process and achieve RUL estimation effectively and generate better results than a previously reported approach in literature.展开更多
Remaining useful life(RUL)prediction is one of the most crucial components in prognostics and health management(PHM)of aero-engines.This paper proposes an RUL prediction method of aero-engines considering the randomne...Remaining useful life(RUL)prediction is one of the most crucial components in prognostics and health management(PHM)of aero-engines.This paper proposes an RUL prediction method of aero-engines considering the randomness of failure threshold.Firstly,a random-coefficient regression(RCR)model is used to model the degradation process of aeroengines.Then,the RUL distribution based on fixed failure threshold is derived.The prior parameters of the degradation model are calculated by a two-step maximum likelihood estimation(MLE)method and the random coefficient is updated in real time under the Bayesian framework.The failure threshold in this paper is defined by the actual degradation process of aeroengines.After that,a expectation maximization(EM)algorithm is proposed to estimate the underlying failure threshold of aeroengines.In addition,the conditional probability is used to satisfy the limitation of failure threshold.Then,based on above results,an analytical expression of RUL distribution of aero-engines based on the RCR model considering random failure threshold(RFT)is derived in a closed-form.Finally,a case study of turbofan engine is used to demonstrate the effectiveness and superiority of the RUL prediction method and the parameters estimation method of failure threshold proposed.展开更多
Actin cytoskeleton plays an important role in cell morphogenesis in plants as demonstrated by pharmacological,biochemical,and genetic studies.The actin cytoskeleton may be involved in
Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for rad...Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.展开更多
Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high de...Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
Since social media increasingly infiltrates the workplace,it may affect employee innovation.However,how so-cial media use(SMU)affects employee innovation performance remains controversial.Therefore,this study explores...Since social media increasingly infiltrates the workplace,it may affect employee innovation.However,how so-cial media use(SMU)affects employee innovation performance remains controversial.Therefore,this study explores the underlying mechanisms and boundary conditions in the relationship between SMU and employee innovation performance.The research model was tested through a survey of 221 Chinese employees.The results show that SMU is positively re-lated to employee innovation performance,with work engagement acting as a mediator in this relationship.Employee tra-ditionality positively moderates the positive impact of work-related SMU on work engagement,while traditionality has no moderating effect on the relationship between social-related SMU and work engagement.This study focuses on the rela-tionship between SMU and innovation performance based on conservation of resources theory,offering insights into the intrinsic mechanism by which SMU affects employee innovation.Furthermore,this study considers the moderating effect of employee traditionality based on social cognitive theory,enriching the knowledge of how traditionality influences the impacts of SMU.This study has theoretical implications for future research and practical guidance for enterprises regard-ing the proper use of social media.展开更多
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.
基金supported by the China Postdoctoral Science Foundation(2017M623415)。
文摘The value range of the failure threshold will generate an uncertain influence on the prediction results for the remaining useful life(RUL) of equipment. Most of the existing studies on the RUL prediction assume that the failure threshold is a fixed value,as they have difficulty in reflecting the random variation of the failure threshold. In connection with the inadequacies of the existing research, an in-depth analysis is carried out to study the effect of the random failure threshold(RFT) on the prediction results for the RUL. First, a nonlinear degradation model with unit-to-unit variability and measurement error is established based on the nonlinear Wiener process. Second, the expectation-maximization(EM) algorithm is used to solve the estimated values of the parameters of the prior degradation model, and the Bayesian method is used to iteratively update the posterior distribution of the random coefficients. Then, the effects of three types of RFT constraint conditions on the prediction results for the RUL are analyzed, and the probability density function(PDF) of the RUL is derived. Finally,the degradation data of aero-turbofan engines are used to verify the correctness and advantages of the method.
基金Project(61174115)supported by the National Natural Science Foundation of ChinaProject(L2013001)supported by Scientific Research Program of Liaoning Provincial Education Department,China
文摘As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.
基金supported by the National Defense Foundation of China(7160118371901216)the China Postdoctoral Science Foundation(2017M623415)
文摘Nonlinearity and implicitness are common degradation features of the stochastic degradation equipment for prognostics.These features have an uncertain effect on the remaining useful life(RUL)prediction of the equipment.The current data-driven RUL prediction method has not systematically studied the nonlinear hidden degradation modeling and the RUL distribution function.This paper uses the nonlinear Wiener process to build a dual nonlinear implicit degradation model.Based on the historical measured data of similar equipment,the maximum likelihood estimation algorithm is used to estimate the fixed coefficients and the prior distribution of a random coefficient.Using the on-site measured data of the target equipment,the posterior distribution of a random coefficient and actual degradation state are step-by-step updated based on Bayesian inference and the extended Kalman filtering algorithm.The analytical form of the RUL distribution function is derived based on the first hitting time distribution.Combined with the two case studies,the proposed method is verified to have certain advantages over the existing methods in the accuracy of prediction.
基金supported by the National Natural Science Foundation of China(6129032461473164+1 种基金61490701)the Research Fund for the Taishan Scholar Project of Shandong Province of China(LZB2015-162)
文摘To predict the remaining useful life(RUL) for a class of nonlinear multi-degradation systems, a method is presented. In the real industrial processes, systems are usually composed by several parts or components, and these parts or components are working in the same environment, thus the degradations of these parts or components will be influenced by common factors. To describe such a phenomenon in degradations, a multi-degradation model with public noise is proposed. To identify the degradation states and the unknown parameters, an iterative estimation method is proposed by using the Kalman filter and the expectation maximization(EM) algorithm. Next, with known thresholds,the RUL of each degradation can be predicted by using the first hitting time(FHT). In addition, the RUL of the whole system can be obtained by a Copula function. Finally, a practical case is used to demonstrate the method proposed.
基金supported by National Natural Science Foundation of China (61703410,61873175,62073336,61873273,61773386,61922089)。
文摘Remaining useful life(RUL) prediction is one of the most crucial elements in prognostics and health management(PHM). Aiming at the imperfect prior information, this paper proposes an RUL prediction method based on a nonlinear random coefficient regression(RCR) model with fusing failure time data.Firstly, some interesting natures of parameters estimation based on the nonlinear RCR model are given. Based on these natures,the failure time data can be fused as the prior information reasonably. Specifically, the fixed parameters are calculated by the field degradation data of the evaluated equipment and the prior information of random coefficient is estimated with fusing the failure time data of congeneric equipment. Then, the prior information of the random coefficient is updated online under the Bayesian framework, the probability density function(PDF) of the RUL with considering the limitation of the failure threshold is performed. Finally, two case studies are used for experimental verification. Compared with the traditional Bayesian method, the proposed method can effectively reduce the influence of imperfect prior information and improve the accuracy of RUL prediction.
基金Projects(51475462,61374138,61370031)supported by the National Natural Science Foundation of China
文摘Real time remaining useful life(RUL) prediction based on condition monitoring is an essential part in condition based maintenance(CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item's individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.
文摘Condition assessment is one of the most significant techniques of the equipment’s health management.Also,in PHM methodology cycle,which is a developed form of CBM,condition assessment is the most important step of this cycle.In this paper,the remaining useful life of the equipment is calculated using the combination of sensor information,determination of degradation state and forecasting the proposed health index.The combination of sensor information has been carried out using a new approach to determining the probabilities in the Dempster-Shafer combination rules and fuzzy c-means clustering method.Using the simulation and forecasting of extracted vibration-based health index by autoregressive Markov regime switching(ARMRS)method,final health state is determined and the remaining useful life(RUL)is estimated.In order to evaluate the model,sensor data provided by FEMTO-ST Institute have been used.
基金supported by the Fundamental Research Funds for the Central Universities(2016083)
文摘A useful life prediction method based on the integration of the stochastic hybrid automata(SHA) model and the frame of the dynamic fault tree(DFT) is proposed. The SHA model can incorporate the orbit environment, work modes, system configuration, dynamic probabilities and degeneration of components,as well as spacecraft dynamics and kinematics. By introducing the frame of DFT, the system is classified into several layers, and the problem of state combination explosion is artfully overcome.An improved dynamic reliability model(DRM) based on the Nelson hypothesis is investigated to improve the defect of cumulative failure probability(CFP), which is used to address the failure probability of components in the SHA model. The simulation using the Monte-Carlo method is finally conducted on two satellites, which are deployed with the same multi-gyro subsystem but run on different orbits. The results show that the predicted useful life of the attitude control system(ACS) with consideration of abrupt failure,degradation, and running environment is quite different between the two satellites.
基金supported by the National Natural Science Foundation of China(6117403061104223+1 种基金61174113)the Natural Science Fund of Guangdong Province(S2011020002735)
文摘Remaining useful life (RUL) estimation is termed as one of the key issues in prognostics and health management (PHM). To achieve RUL estimation for individual equipment, we present a degradation data-driven RUL estimation approach under the collaboration between Bayesian updating and expectation maximization (EM) algorithm. Firstly, we utilize an exponential-like degradation model to describe equipment degradation process and update stochastic parameters in the model via Bayesian approach. Based on the Bayesian updating results, both probability distribution of the RUL and its point estimation can be derived. Secondly, based on the monitored degradation data to date, we give a parameter estimation approach for non-stochastic parameters in the degradation model and prove that the obtained estimation is unique and optimal in each iteration. Finally, a numerical example and a practical case study for global positioning system (GPS) receiver are provided to show that the presented approach can model degradation process and achieve RUL estimation effectively and generate better results than a previously reported approach in literature.
基金supported by the National Natural Science Foundation of China(61703410,61873175,62073336,61873273,61773386,61922-089)the Basic Research Plan of Shaanxi Natural Science Foundation of China(2022JM-376).
文摘Remaining useful life(RUL)prediction is one of the most crucial components in prognostics and health management(PHM)of aero-engines.This paper proposes an RUL prediction method of aero-engines considering the randomness of failure threshold.Firstly,a random-coefficient regression(RCR)model is used to model the degradation process of aeroengines.Then,the RUL distribution based on fixed failure threshold is derived.The prior parameters of the degradation model are calculated by a two-step maximum likelihood estimation(MLE)method and the random coefficient is updated in real time under the Bayesian framework.The failure threshold in this paper is defined by the actual degradation process of aeroengines.After that,a expectation maximization(EM)algorithm is proposed to estimate the underlying failure threshold of aeroengines.In addition,the conditional probability is used to satisfy the limitation of failure threshold.Then,based on above results,an analytical expression of RUL distribution of aero-engines based on the RCR model considering random failure threshold(RFT)is derived in a closed-form.Finally,a case study of turbofan engine is used to demonstrate the effectiveness and superiority of the RUL prediction method and the parameters estimation method of failure threshold proposed.
文摘Actin cytoskeleton plays an important role in cell morphogenesis in plants as demonstrated by pharmacological,biochemical,and genetic studies.The actin cytoskeleton may be involved in
基金National Natural Science Foundation of China (42027805)。
文摘Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.
基金supported by Supported by National Key Laboratory of Cotton Bio-breeding and Integrated Utilization(CB2023C07)Xinjiang Autonomous Region"Three Agricultural"Backbone Talent Training Program(2022SNGGNT024)Xinjiang Huyanghe City Science and Technology Program(2023C08).
文摘Nitrogen(N)and phosphorus(P)are mineral nutrients essential for plant growth and development,playing a crucial role throughout the plant life cycle.Cotton,a globally significant textile crop,has a particularly high demand for N fertilizer across its developmental stages.This review explores the effects of adequate or deficient N and P levels on cotton growth phases,focusing on their influence on physiological processes and molecular mechanisms.Key topics include the regulation of N-and P-related enzymes,hormones,and genes,as well as the complex interplay of N-and P-related signaling pathways from the aspects of N-P signaling integration to regulate root development,N-P signaling integration to regulate nutrient uptake,and regulation of N-P interactions—a frontier in current research.Strategies for improving N and P use efficiency are also discussed,including developing high-efficiency cotton cultivars and identifying functional genes to enhance productivity.Generally speaking,we take model plants as a reference in the hope of coming up with new strategies for the efficient utilization of N and P in cotton.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
基金supported by the National Natural Science Foundation of China(72332007)。
文摘Since social media increasingly infiltrates the workplace,it may affect employee innovation.However,how so-cial media use(SMU)affects employee innovation performance remains controversial.Therefore,this study explores the underlying mechanisms and boundary conditions in the relationship between SMU and employee innovation performance.The research model was tested through a survey of 221 Chinese employees.The results show that SMU is positively re-lated to employee innovation performance,with work engagement acting as a mediator in this relationship.Employee tra-ditionality positively moderates the positive impact of work-related SMU on work engagement,while traditionality has no moderating effect on the relationship between social-related SMU and work engagement.This study focuses on the rela-tionship between SMU and innovation performance based on conservation of resources theory,offering insights into the intrinsic mechanism by which SMU affects employee innovation.Furthermore,this study considers the moderating effect of employee traditionality based on social cognitive theory,enriching the knowledge of how traditionality influences the impacts of SMU.This study has theoretical implications for future research and practical guidance for enterprises regard-ing the proper use of social media.