Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivati...Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.展开更多
Background:Cotton(Gossypium hirsutum L.)is grown for fiber and oil purposes in tropical and sub-tropical areas of the world.Pakistan is the 4th largest producer of cotton.It has a significant contribution in the GDP o...Background:Cotton(Gossypium hirsutum L.)is grown for fiber and oil purposes in tropical and sub-tropical areas of the world.Pakistan is the 4th largest producer of cotton.It has a significant contribution in the GDP of Pakistan.Therefore,the present study was performed to assess the genetic variations and genetic diversity of yield and fiber quality traits in cotton and to analyze the associations present among them.Results:Analysis of variance exhibited significant variation for all studied traits except total number of nodes and the height to node ratio.The phenotypic coefficient of variation was higher than the genotypic coefficient of variation for all studied traits.Plant height,monopodial branches,total number of bolls,lint index,seed index,and seed cotton yield displayed high heritabilities in a broad sense with maximum genetic advanee.Correlation analysis revealed that seed cotton yield had a significant positive association with plant height,the nu mber of monopodial branches,the nu mber of sympodia I branches,ginning outturn(GOT),the number of bolls,seed per boll,seed index,uniformity index,the number of sympodial branches,reflectance,and seed index at the genotypic level while a significant positive relationship was observed with plant height,the number of sympodial branches,boll number,and GOT.Plant height,monopodial branches,GOT,boll weight,seeds per boll,and short fiber index exerted direct positive effects on seed cotton yield.The first 6 principal component analysis(PCs)out of the total fourteen PCs displayed eigenvalues(>1)and had maximum share to total variability(82.79%).The attributes that had maximum share to total divergence in eluded plant height,uniformity index,the nu mber of sympodial branches,seed per boll,GOT,seed cotton yield,and short fiber index.Conclusion:The genotype AA-802,IUB-13,FH-159,FH-458,and CIM-595 were genetically diverse for most of the yield and fiber quality traits and could be utilized for the selection of better performing genotypes for further improvement.展开更多
Background:Genetic improvement in fiber quality is one of the main challenges for cotton breeders.Quantitative trait loci(QTL)mapping provides a powerful approach to dissect the molecular mechanism in fiber quality tr...Background:Genetic improvement in fiber quality is one of the main challenges for cotton breeders.Quantitative trait loci(QTL)mapping provides a powerful approach to dissect the molecular mechanism in fiber quality traits.In present study,F14 recombinant inbred line(RIL)population was backcrossed to paternal parent for a paternal backcross(BC/P)population,deriving from one upland cotton hybrid.Three repetitive BC/P field trials and one maternal backcross(BC/M)field trial were performed including both two BC populations and the original RIL population.Results:In total,24 novel QTLs are detected for fiber quality traits and among which 13 QTLs validated previous results.Thirty-five QTLs in BC/P populations explain 5.01%–22.09%of phenotype variation(PV).Among the 35 QTLs,23 QTLs are detected in BC/P population alone.Present study provides novel alleles of male parent for fiber quality traits with positive genetic effects.Particularly,qFS-Chr3–1 explains 22.09%of PV in BC/P population,which increaseds 0.48 cN·tex−1 for fiber strength.A total of 7,2,8,2 and 6 QTLs explain over 10.00%of PV for fiber length,fiber uniformity,fiber strength,fiber elongation and fiber micronaire,respectively.In RIL population,six common QTLs are detected in more than one environment:qFL-Chr1–2,qFS-Chr5–1,qFS-Chr9–1,qFS-Chr21–1,qFM-Chr9–1 and qFM-Chr9–2.Two common QTLs of qFE-Chr2–2(TMB2386-SWU12343)and qFM-Chr9–1(NAU2873-CGR6771)explain 22.42%and 21.91%of PV.The region between NAU4034 and TMB1296 harbor 30 genes(379 kb)in A05 and 42 genes(49 kb)in D05 for fiber length along the QTL qFL-Chr5–1 in BC/P population,respectively.In addition,a total of 142 and 46 epistatic QTLs and QTL×environments(E-QTLs and QQEs)are identified in recombinant inbred lines in paternal backcross(RIL-P)and paternal backcross(BC/P)populations,respectively.Conclusions:The present studies provide informative basis for improving cotton fiber quality in different populations.展开更多
Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the s...Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the sustainable development of cotton production.However,the effect of different growth media on the screening outcomes remains unclear.To address this,we evaluated the low P tolerance of 25 cotton cultivars through hydroponic culture at two P levels(0.01 and 0.5 mmol·L^(-1) KH_(2)PO_(4))in 2018 and field culture with two P rates(0 and 90 kg·hm^(-2),in P2O5)in 2019.Results In the hydroponic experiments,principal component analysis(PCA)showed that shoot dry weight(SDW)and P utilization efficiency in shoots(PUES)of cotton seedlings explained over 45%of the genetic variation in P nutri-tion.Cotton cultivars were subjected to comprehensive cluster analysis,utilizing agronomic traits(SDW and PUES)during the seedling stage(hydroponic)and yield and fiber quality traits during the mature stage(in field).These cultivars were grouped into four clusters:resistant,moderately resistant,moderately sensitive,and sensitive.In low P conditions(0.01 mmol·L^(-1) KH_(2)PO_(4) and 4.5 mg·kg^(-1) AP),the low-P-resistant cluster showed significantly smaller reduc-tions in SDW(54%),seed cotton yield(3%),lint yield(-2%),fiber length(-1)%),and fiber strength(-3%)compared with the low-P-sensitive cluster(75%,13%,17%,7%,and 9%,respectively).The increase in PUES(299%)in the resist-ant cluster was also significantly higher than in the sensitive cluster(131%).Four of the eight low-P-tolerant cotton cultivars identified in the field and six in the hydroponic screening overlapped in both screenings.Two cultivars overlapped in both screening in the low-P-sensitive cluster.Conclusion Based on the screenings from both field and hydroponic cultures,ZM-9131,CCRI-79,JM-958,and J-228 were identified as low-P-tolerant cotton cultivars,while JM-169,XM-33B,SCRC-28,and LNM-18 were identified as low P-sensitive cotton cultivars.The relationship between field and hydroponic screening results for low-P-tolerant cotton cultivars was strong,although field validation is still required.The low P tolerance of these cultivars was closely associ-ated with SDW and PUES.展开更多
Background Zinc(Zn),being the most deficient micronutrient,can largely limit plant growth and development on alkaline calcareous soil.Crop species and varieties within species differently require Zn for optimum produc...Background Zinc(Zn),being the most deficient micronutrient,can largely limit plant growth and development on alkaline calcareous soil.Crop species and varieties within species differently require Zn for optimum productivity.The current study aimed to optimize Zn level and mode of application for better growth,yield,and fiber quality of cotton(Gossypium hirsutum L.).The experimental plan comprised a control group with no Zn application,three Zn levels through soil application,i.e.5 mg·kg^(-1)(SZn5),10 mg·kg^(-1)(SZn10),and 15 mg·kg^(-1)(SZn15),two levels of foliar application including 0.5%(FZn0.5)and 1%(FZn1)Zn solution,and various combinations of soil plus foliar application.Two cotton cultivars,CIM-663(Bt)and Cyto-124(non-Bt)were used,and each treatment was replicated thrice.Results Zinc nutrition caused a significant(P≤0.05)improvement in growth,yield,physiological,and fiber quality characteristics of both cotton cultivars.All levels and modes of Zn application were found effective in improving cotton productivity on alkaline calcareous soil.However,integrated soil application and foliar spray showed superiority over sole soil or foliar application.Among different treatments,SZn15+FZn1 caused the highest improvement in most of the observed growth and yield traits.The said treatment maximally increased the leaf Zn concentration by 270.5%and 218.4%with a subsequent increase in plant height 23.2%and 28.0%,monopodial branches 40.7%and 42.1%,sympodial branches 37.2%and 35.2%,seed cotton yield 32.5%and 36.6%,and lint yield 30.0%and 34.6%in CIM-663 and Cyto-124,respectively,compared with the control.SZn15+FZn1 also caused the highest increase in relative water contents 32.6%and 22.4%,chlorophyll contents 92.0%and 67.1%,and stomatal conductance 112.8%and 100.8%in CIM-663 and Cyto-124,respectively,compared with the control.Among the fiber quality characteristics,fiber fineness was maximally improved by 19.7%and 15.9%in CIM-663 and Cyto-124,respectively,with SZn15+FZn1 compared with the control.Leaf Zn concentration was positively correlated with fiber length(R2=0.7173),fiber strength(R2=0.5483),and fiber fineness(R2=0.6379)of both cotton cultivars grown with different levels and application modes of Zn.The benefit-cost ratio was remarkably improved with Zn nutrition,and the highest value of 1.64 was found in CIM-663 at SZn10+FZn1 and SZn15+FZn1.Conclusion The plant growth,physiological,yield,and fiber quality characteristics of cotton cultivars were significantly improved with Zn supply at different levels and modes of application.SZn15+FZN1 could be recommended to get optimum seed cotton yield and fiber quality of cotton on alkaline calcareous soil.展开更多
Upper-half-mean length(Len),uniformity index(UI),breaking tenacity(Str),and micronaire value(Mic) are the key quality parameters of cotton fiber.In this study,182 upland cotton
Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n produ...Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n production.Identifying stable quantitative trait locus(QTLs)controlling fiber quality and yield related traits are necessary prerequisites for marker-assisted selection(MAS).Results:A genetic linkage map was constructed with 312 simple sequence repeat(SSR)loci and 35 linkage groups using JoinMap 4.0;the map spanned 1 929.9 cM,with an average interval between two markers of 6.19 cM,and covered approximately 43.37%of the cotton genome.A total of 74 QTLs controlling fiber quality and 41 QTLs controlling yield-related traits were identified in 4 segregating generations.These QTLs were distributed across 20 chromosomes and collectively explained 1.01%?27.80%of the observed phenotypic variations.In particular,35 stable QTLs could be identified in multiple generations,25 common QTLs were con sistent with those in previous studies,and 15 QTL clusters were found in 11 chromosome segments.Conclusion:These studies provide a theoretical basis for improving cotton yield and fiber quality for molecular marker-assisted selection.展开更多
Background:Cott on fibers are single-celled exte nsions of the seed epidermis,a model tissue for studying cytoskeleton.Tubulin genes play a critical role in synthesizing the microtubules(MT)as a core element of the cy...Background:Cott on fibers are single-celled exte nsions of the seed epidermis,a model tissue for studying cytoskeleton.Tubulin genes play a critical role in synthesizing the microtubules(MT)as a core element of the cytoskeleton.However,there is a lack of studies concerning the systematic characterization of the tubulin gene family in cotton.Therefore,the identification and portrayal of G.hirsutum tubulin genes can provide key targets for molecular manipulation in cotton breeding.Result:In this study,we investigated all tubulin genes from different plant species and identified 98 tubulin genes in G.hirsutum.Phylogenetic an a lysis showed that tubulin family genes were classified into three subfamilies.The protein motifs and gene structure ofβ-tubulin genes are more conserved compared withγ-tubulin genes.Most tubulin genes are located at the proximate ends of the chromosomes.Spatiotemporal expression pattern by transcriptome and qRT-PCR analysis revealed that 12α-tubulin andβ-tubulin genes are specifically expressed during different fiber development stages.However,Gh.A03G027200,Gh.D03G 169300,and Gh.A1lG258900 had differential expression patterns at distinct stages of fiber development in varieties JO2508 and ZRI015.Conclusion:In this study,the evol ut io nary an alysis showed that the tubulin genes were divided into three clades.The genetic structures and molecular functions were highly con served in different plants.Three candidate genes,Gh.A03G027200f Gh.D03G169300,and Gh.A11G258900 may play a key role during fiber development complementing fiber length and strength.展开更多
Heat waves,and an increased number of warm days and nights,have become more prevalent in major agricultural regions of the world.Although well adapted to semi-arid regions,cotton is vulnerable to high temperatures,par...Heat waves,and an increased number of warm days and nights,have become more prevalent in major agricultural regions of the world.Although well adapted to semi-arid regions,cotton is vulnerable to high temperatures,particularly during flowering and boll development.To maintain lint yield potential without compromising its quality under high-temperature stress,it is essential to understand the effects of heat stress on various stages of plant growth and development,and associated tolerance mechanisms.Despite ongoing efforts to gather data on the effects of heat stress on cotton growth and development,there remains a critical gap in understanding the distinct influence of high temperatures during the day and night on cotton yield and quality.Also,identifying mechanisms and target traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cotton for future uncertain climates.To bridge these knowledge gaps,we embarked on a rigorous and comprehensive review of published literature,delving into the impact of heat stress on cotton yields and the consequential losses in fiber quality.This review encompasses information on the effects of heat stress on growth,physiological,and biochemical responses,fertilization,cotton yield,and quality.Additionally,we discuss management options for minimizing heat stress-induced damage,and the benefits of integrating conventional and genomics-assisted breeding for developing heat-tolerant cotton cultivars.Finally,future research areas that need to be addressed to develop heat-resilient cotton are proposed.展开更多
Background:Upland cotton(Gossypium hirsutum)accounts for more than 90%of the annual world cotton output because of its high yield potential.However,yield and fiber quality traits often show negative correlations.We co...Background:Upland cotton(Gossypium hirsutum)accounts for more than 90%of the annual world cotton output because of its high yield potential.However,yield and fiber quality traits often show negative correlations.We constructed four F_(2)populations of upland cotton,using two normal lines(4133B and SGK9708)with high yield potential but moderate fiber quality and two introgression lines(Suyuan04–3 and J02–247)with superior fiber quality,and used them to investigate the genetic basis underlying complex traits such as yield and fiber quality in upland cotton.We also phenotyped eight agronomic and economic traits and mapped quantitative trait loci(QTLs).Results:Extensive phenotype variations and transgressive segregation were found across the segregation populations.We constructed four genetic maps of 585.97 centiMorgan(cM),752.45 cM,752.45 cM,and 1163.66 cM,one for each of the four F_(2)populations.Fifty QTLs were identified across the four populations(7 for plant height,27 for fiber quality and 16 for yield).The same QTLs were identified in different populations,including qBW4 and qBW2,which were linked to a common simple sequence repeat(SSR)marker,NAU1255.A QTL cluster containing eight QTLs for six different traits was characterized on linkage group 9 of the 4133B×Suyuan04–3 population.Conclusions:These findings will provide insights into the genetic basis of simultaneous improvement of yield and fiber quality in upland cotton breeding.展开更多
棉花伏前桃、伏桃、早秋桃和晚秋桃(“四桃”)的时空分布不同,但目前“四桃”的纤维产量和品质差异及其对氮(N)肥与缩节胺(DPC)配施的响应鲜见报道。2015—2017年,在郑州市黄河滩区采用双因素裂区设计,以3个N肥用量为主区,即不施N肥(N0...棉花伏前桃、伏桃、早秋桃和晚秋桃(“四桃”)的时空分布不同,但目前“四桃”的纤维产量和品质差异及其对氮(N)肥与缩节胺(DPC)配施的响应鲜见报道。2015—2017年,在郑州市黄河滩区采用双因素裂区设计,以3个N肥用量为主区,即不施N肥(N0)、常量施N(N1)和过量施N(N2),用量分别为0、225和450 kg hm-2;以3个DPC用量为副区,即不喷施DPC(D0)、常量DPC(D1)和过量DPC(D2),用量分别为0、75和150 g hm-2。研究了N肥与DPC配施对棉花纤维产量及品质时间分布的影响。结果表明,(1)N1处理的“四桃”纤维产量比N0和N2处理分别增加36.79%和3.27%, N2处理减产不显著;D1处理比D0和D2处理分别增产17.53%和8.50%, D2处理减产达到显著水平;N1D1组合产量最高,其余组合减产1.15%~51.53%。N1D1组合的伏前桃、伏桃、早秋桃和晚秋桃产量分别占8.89%、45.35%、33.41%和12.36%,伏桃和早秋桃是产量主体,但早秋桃的成产强度大。随着施N量增加,早秋桃和晚秋桃的纤维产量占比增加,而随着DPC用量增加则表现相反。(2) N肥用量和DPC用量均对纤维长度、整齐度、比强度和马克隆值有显著影响,但对纤维伸长率影响达不到显著水平。N1处理和D1处理的纤维品质综合表现最优,但D0处理马克隆值最佳。N肥与DPC用量互作对“四桃”的纤维比强度和马克隆值有显著影响,其中, N1D1处理“四桃”的比强度和马克隆值均表现最优,而N2D2处理“四桃”的比强度和马克隆值表现最差。此外,过量施N和过量喷施DPC均会升高马克隆值。(3)“四桃”的纤维品质存在差异。伏前桃的纤维品质除马克隆值最优外,其纤维长度、整齐度和比强度最差;伏桃和早秋桃的纤维长度、整齐度和比强度最优,但马克隆值表现最差,伸长率居中;晚秋桃的伸长率最优,其余品质指标均居中。研究结果丰富了“四桃”产量和品质差异的相关理论,并为棉花合理施N和喷施DPC以及“四桃”纤维的合理利用提供了科学依据。展开更多
Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but ...Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but it has a complex allotetraploid genome that contains at least 30000 genes in 2500展开更多
文摘Background As the most widely cultivated fiber crop,cotton production depends on hybridization to unlock the yield potential of current varieties.A deep understanding of genetic dissection is crucial for the cultivation of enhanced hybrid plants with desired traits,such as high yield and fine fiber quality.In this study,the general combining ability(GCA)and specific combining ability(SCA)of yield and fiber quality of nine cotton parents(six lines and three testers)and eighteen F1 crosses produced using a line×tester mating design were analyzed.Results The results revealed significant effects of genotypes,parents,crosses,and interactions between parents and crosses for most of the studied traits.Moreover,the effects of both additive and non-additive gene actions played a notably significant role in the inheritance of most of the yield and fiber quality attributes.The F1 hybrids of(Giza 90×Aust)×Giza 86,Uzbekistan 1×Giza 97,and Giza 96×Giza 97 demonstrated superior performance due to their favorable integration of high yield attributes and premium fiber quality characteristics.Path analysis revealed that lint yield has the highest positive direct effect on seed cotton yield,while lint percentage showed the highest negative direct effect on seed cotton yield.Principal component analysis identified specific parents and hybrids associated with higher cotton yield,fiber quality,and other agronomic traits.Conclusion This study provides insights into identifying potential single-and three-way cross hybrids with superior cotton yield and fiber quality characteristics,laying a foundation for future research on improving fiber quality in cotton.
基金Department of Plant Breeding and Genetics,University of Agriculture Faisalabad,Faisalabad-Pakistan.
文摘Background:Cotton(Gossypium hirsutum L.)is grown for fiber and oil purposes in tropical and sub-tropical areas of the world.Pakistan is the 4th largest producer of cotton.It has a significant contribution in the GDP of Pakistan.Therefore,the present study was performed to assess the genetic variations and genetic diversity of yield and fiber quality traits in cotton and to analyze the associations present among them.Results:Analysis of variance exhibited significant variation for all studied traits except total number of nodes and the height to node ratio.The phenotypic coefficient of variation was higher than the genotypic coefficient of variation for all studied traits.Plant height,monopodial branches,total number of bolls,lint index,seed index,and seed cotton yield displayed high heritabilities in a broad sense with maximum genetic advanee.Correlation analysis revealed that seed cotton yield had a significant positive association with plant height,the nu mber of monopodial branches,the nu mber of sympodia I branches,ginning outturn(GOT),the number of bolls,seed per boll,seed index,uniformity index,the number of sympodial branches,reflectance,and seed index at the genotypic level while a significant positive relationship was observed with plant height,the number of sympodial branches,boll number,and GOT.Plant height,monopodial branches,GOT,boll weight,seeds per boll,and short fiber index exerted direct positive effects on seed cotton yield.The first 6 principal component analysis(PCs)out of the total fourteen PCs displayed eigenvalues(>1)and had maximum share to total variability(82.79%).The attributes that had maximum share to total divergence in eluded plant height,uniformity index,the nu mber of sympodial branches,seed per boll,GOT,seed cotton yield,and short fiber index.Conclusion:The genotype AA-802,IUB-13,FH-159,FH-458,and CIM-595 were genetically diverse for most of the yield and fiber quality traits and could be utilized for the selection of better performing genotypes for further improvement.
基金the National Key R&D Program for Crop Breeding(2016YFD0101407)to Hua JP.
文摘Background:Genetic improvement in fiber quality is one of the main challenges for cotton breeders.Quantitative trait loci(QTL)mapping provides a powerful approach to dissect the molecular mechanism in fiber quality traits.In present study,F14 recombinant inbred line(RIL)population was backcrossed to paternal parent for a paternal backcross(BC/P)population,deriving from one upland cotton hybrid.Three repetitive BC/P field trials and one maternal backcross(BC/M)field trial were performed including both two BC populations and the original RIL population.Results:In total,24 novel QTLs are detected for fiber quality traits and among which 13 QTLs validated previous results.Thirty-five QTLs in BC/P populations explain 5.01%–22.09%of phenotype variation(PV).Among the 35 QTLs,23 QTLs are detected in BC/P population alone.Present study provides novel alleles of male parent for fiber quality traits with positive genetic effects.Particularly,qFS-Chr3–1 explains 22.09%of PV in BC/P population,which increaseds 0.48 cN·tex−1 for fiber strength.A total of 7,2,8,2 and 6 QTLs explain over 10.00%of PV for fiber length,fiber uniformity,fiber strength,fiber elongation and fiber micronaire,respectively.In RIL population,six common QTLs are detected in more than one environment:qFL-Chr1–2,qFS-Chr5–1,qFS-Chr9–1,qFS-Chr21–1,qFM-Chr9–1 and qFM-Chr9–2.Two common QTLs of qFE-Chr2–2(TMB2386-SWU12343)and qFM-Chr9–1(NAU2873-CGR6771)explain 22.42%and 21.91%of PV.The region between NAU4034 and TMB1296 harbor 30 genes(379 kb)in A05 and 42 genes(49 kb)in D05 for fiber length along the QTL qFL-Chr5–1 in BC/P population,respectively.In addition,a total of 142 and 46 epistatic QTLs and QTL×environments(E-QTLs and QQEs)are identified in recombinant inbred lines in paternal backcross(RIL-P)and paternal backcross(BC/P)populations,respectively.Conclusions:The present studies provide informative basis for improving cotton fiber quality in different populations.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2024D01A56)the National Key Research and Develop-ment Program of China(2017YFD0201906)+2 种基金the Central Research Institutes of Basic Research and the Public Service Special Foundation(1610162022044)the China Agriculture Research System(CARS-15-11)the Agricultural Sci-ence and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Background Soil available phosphorus(AP)deficiency significantly limits cotton production,particularly in arid and saline-alkaline regions.Screening cotton cultivars for low phosphorus(P)tolerance is crucial for the sustainable development of cotton production.However,the effect of different growth media on the screening outcomes remains unclear.To address this,we evaluated the low P tolerance of 25 cotton cultivars through hydroponic culture at two P levels(0.01 and 0.5 mmol·L^(-1) KH_(2)PO_(4))in 2018 and field culture with two P rates(0 and 90 kg·hm^(-2),in P2O5)in 2019.Results In the hydroponic experiments,principal component analysis(PCA)showed that shoot dry weight(SDW)and P utilization efficiency in shoots(PUES)of cotton seedlings explained over 45%of the genetic variation in P nutri-tion.Cotton cultivars were subjected to comprehensive cluster analysis,utilizing agronomic traits(SDW and PUES)during the seedling stage(hydroponic)and yield and fiber quality traits during the mature stage(in field).These cultivars were grouped into four clusters:resistant,moderately resistant,moderately sensitive,and sensitive.In low P conditions(0.01 mmol·L^(-1) KH_(2)PO_(4) and 4.5 mg·kg^(-1) AP),the low-P-resistant cluster showed significantly smaller reduc-tions in SDW(54%),seed cotton yield(3%),lint yield(-2%),fiber length(-1)%),and fiber strength(-3%)compared with the low-P-sensitive cluster(75%,13%,17%,7%,and 9%,respectively).The increase in PUES(299%)in the resist-ant cluster was also significantly higher than in the sensitive cluster(131%).Four of the eight low-P-tolerant cotton cultivars identified in the field and six in the hydroponic screening overlapped in both screenings.Two cultivars overlapped in both screening in the low-P-sensitive cluster.Conclusion Based on the screenings from both field and hydroponic cultures,ZM-9131,CCRI-79,JM-958,and J-228 were identified as low-P-tolerant cotton cultivars,while JM-169,XM-33B,SCRC-28,and LNM-18 were identified as low P-sensitive cotton cultivars.The relationship between field and hydroponic screening results for low-P-tolerant cotton cultivars was strong,although field validation is still required.The low P tolerance of these cultivars was closely associ-ated with SDW and PUES.
文摘Background Zinc(Zn),being the most deficient micronutrient,can largely limit plant growth and development on alkaline calcareous soil.Crop species and varieties within species differently require Zn for optimum productivity.The current study aimed to optimize Zn level and mode of application for better growth,yield,and fiber quality of cotton(Gossypium hirsutum L.).The experimental plan comprised a control group with no Zn application,three Zn levels through soil application,i.e.5 mg·kg^(-1)(SZn5),10 mg·kg^(-1)(SZn10),and 15 mg·kg^(-1)(SZn15),two levels of foliar application including 0.5%(FZn0.5)and 1%(FZn1)Zn solution,and various combinations of soil plus foliar application.Two cotton cultivars,CIM-663(Bt)and Cyto-124(non-Bt)were used,and each treatment was replicated thrice.Results Zinc nutrition caused a significant(P≤0.05)improvement in growth,yield,physiological,and fiber quality characteristics of both cotton cultivars.All levels and modes of Zn application were found effective in improving cotton productivity on alkaline calcareous soil.However,integrated soil application and foliar spray showed superiority over sole soil or foliar application.Among different treatments,SZn15+FZn1 caused the highest improvement in most of the observed growth and yield traits.The said treatment maximally increased the leaf Zn concentration by 270.5%and 218.4%with a subsequent increase in plant height 23.2%and 28.0%,monopodial branches 40.7%and 42.1%,sympodial branches 37.2%and 35.2%,seed cotton yield 32.5%and 36.6%,and lint yield 30.0%and 34.6%in CIM-663 and Cyto-124,respectively,compared with the control.SZn15+FZn1 also caused the highest increase in relative water contents 32.6%and 22.4%,chlorophyll contents 92.0%and 67.1%,and stomatal conductance 112.8%and 100.8%in CIM-663 and Cyto-124,respectively,compared with the control.Among the fiber quality characteristics,fiber fineness was maximally improved by 19.7%and 15.9%in CIM-663 and Cyto-124,respectively,with SZn15+FZn1 compared with the control.Leaf Zn concentration was positively correlated with fiber length(R2=0.7173),fiber strength(R2=0.5483),and fiber fineness(R2=0.6379)of both cotton cultivars grown with different levels and application modes of Zn.The benefit-cost ratio was remarkably improved with Zn nutrition,and the highest value of 1.64 was found in CIM-663 at SZn10+FZn1 and SZn15+FZn1.Conclusion The plant growth,physiological,yield,and fiber quality characteristics of cotton cultivars were significantly improved with Zn supply at different levels and modes of application.SZn15+FZN1 could be recommended to get optimum seed cotton yield and fiber quality of cotton on alkaline calcareous soil.
文摘Upper-half-mean length(Len),uniformity index(UI),breaking tenacity(Str),and micronaire value(Mic) are the key quality parameters of cotton fiber.In this study,182 upland cotton
基金supported by the National Natural Science Foundation of China(31371668)the National Agricultural Science and Technology Innovation project for CAAS(CAAS-ASTIP-2016-ICR)
文摘Background:Cotton is a significant economic crop that plays an indispensable role in many domains.Gossypium hirsutum L.is the most important fiber crop worldwide and contributes to more than 95%of global cotto n production.Identifying stable quantitative trait locus(QTLs)controlling fiber quality and yield related traits are necessary prerequisites for marker-assisted selection(MAS).Results:A genetic linkage map was constructed with 312 simple sequence repeat(SSR)loci and 35 linkage groups using JoinMap 4.0;the map spanned 1 929.9 cM,with an average interval between two markers of 6.19 cM,and covered approximately 43.37%of the cotton genome.A total of 74 QTLs controlling fiber quality and 41 QTLs controlling yield-related traits were identified in 4 segregating generations.These QTLs were distributed across 20 chromosomes and collectively explained 1.01%?27.80%of the observed phenotypic variations.In particular,35 stable QTLs could be identified in multiple generations,25 common QTLs were con sistent with those in previous studies,and 15 QTL clusters were found in 11 chromosome segments.Conclusion:These studies provide a theoretical basis for improving cotton yield and fiber quality for molecular marker-assisted selection.
基金grants from the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.31621005).
文摘Background:Cott on fibers are single-celled exte nsions of the seed epidermis,a model tissue for studying cytoskeleton.Tubulin genes play a critical role in synthesizing the microtubules(MT)as a core element of the cytoskeleton.However,there is a lack of studies concerning the systematic characterization of the tubulin gene family in cotton.Therefore,the identification and portrayal of G.hirsutum tubulin genes can provide key targets for molecular manipulation in cotton breeding.Result:In this study,we investigated all tubulin genes from different plant species and identified 98 tubulin genes in G.hirsutum.Phylogenetic an a lysis showed that tubulin family genes were classified into three subfamilies.The protein motifs and gene structure ofβ-tubulin genes are more conserved compared withγ-tubulin genes.Most tubulin genes are located at the proximate ends of the chromosomes.Spatiotemporal expression pattern by transcriptome and qRT-PCR analysis revealed that 12α-tubulin andβ-tubulin genes are specifically expressed during different fiber development stages.However,Gh.A03G027200,Gh.D03G 169300,and Gh.A1lG258900 had differential expression patterns at distinct stages of fiber development in varieties JO2508 and ZRI015.Conclusion:In this study,the evol ut io nary an alysis showed that the tubulin genes were divided into three clades.The genetic structures and molecular functions were highly con served in different plants.Three candidate genes,Gh.A03G027200f Gh.D03G169300,and Gh.A11G258900 may play a key role during fiber development complementing fiber length and strength.
基金supported by Cotton Incorporated(Project#22-494)。
文摘Heat waves,and an increased number of warm days and nights,have become more prevalent in major agricultural regions of the world.Although well adapted to semi-arid regions,cotton is vulnerable to high temperatures,particularly during flowering and boll development.To maintain lint yield potential without compromising its quality under high-temperature stress,it is essential to understand the effects of heat stress on various stages of plant growth and development,and associated tolerance mechanisms.Despite ongoing efforts to gather data on the effects of heat stress on cotton growth and development,there remains a critical gap in understanding the distinct influence of high temperatures during the day and night on cotton yield and quality.Also,identifying mechanisms and target traits that induce greater high day and night temperature tolerance is essential for breeding climate-resilient cotton for future uncertain climates.To bridge these knowledge gaps,we embarked on a rigorous and comprehensive review of published literature,delving into the impact of heat stress on cotton yields and the consequential losses in fiber quality.This review encompasses information on the effects of heat stress on growth,physiological,and biochemical responses,fertilization,cotton yield,and quality.Additionally,we discuss management options for minimizing heat stress-induced damage,and the benefits of integrating conventional and genomics-assisted breeding for developing heat-tolerant cotton cultivars.Finally,future research areas that need to be addressed to develop heat-resilient cotton are proposed.
基金the National Key R&D Program of China(2017YFD0101600).
文摘Background:Upland cotton(Gossypium hirsutum)accounts for more than 90%of the annual world cotton output because of its high yield potential.However,yield and fiber quality traits often show negative correlations.We constructed four F_(2)populations of upland cotton,using two normal lines(4133B and SGK9708)with high yield potential but moderate fiber quality and two introgression lines(Suyuan04–3 and J02–247)with superior fiber quality,and used them to investigate the genetic basis underlying complex traits such as yield and fiber quality in upland cotton.We also phenotyped eight agronomic and economic traits and mapped quantitative trait loci(QTLs).Results:Extensive phenotype variations and transgressive segregation were found across the segregation populations.We constructed four genetic maps of 585.97 centiMorgan(cM),752.45 cM,752.45 cM,and 1163.66 cM,one for each of the four F_(2)populations.Fifty QTLs were identified across the four populations(7 for plant height,27 for fiber quality and 16 for yield).The same QTLs were identified in different populations,including qBW4 and qBW2,which were linked to a common simple sequence repeat(SSR)marker,NAU1255.A QTL cluster containing eight QTLs for six different traits was characterized on linkage group 9 of the 4133B×Suyuan04–3 population.Conclusions:These findings will provide insights into the genetic basis of simultaneous improvement of yield and fiber quality in upland cotton breeding.
文摘棉花伏前桃、伏桃、早秋桃和晚秋桃(“四桃”)的时空分布不同,但目前“四桃”的纤维产量和品质差异及其对氮(N)肥与缩节胺(DPC)配施的响应鲜见报道。2015—2017年,在郑州市黄河滩区采用双因素裂区设计,以3个N肥用量为主区,即不施N肥(N0)、常量施N(N1)和过量施N(N2),用量分别为0、225和450 kg hm-2;以3个DPC用量为副区,即不喷施DPC(D0)、常量DPC(D1)和过量DPC(D2),用量分别为0、75和150 g hm-2。研究了N肥与DPC配施对棉花纤维产量及品质时间分布的影响。结果表明,(1)N1处理的“四桃”纤维产量比N0和N2处理分别增加36.79%和3.27%, N2处理减产不显著;D1处理比D0和D2处理分别增产17.53%和8.50%, D2处理减产达到显著水平;N1D1组合产量最高,其余组合减产1.15%~51.53%。N1D1组合的伏前桃、伏桃、早秋桃和晚秋桃产量分别占8.89%、45.35%、33.41%和12.36%,伏桃和早秋桃是产量主体,但早秋桃的成产强度大。随着施N量增加,早秋桃和晚秋桃的纤维产量占比增加,而随着DPC用量增加则表现相反。(2) N肥用量和DPC用量均对纤维长度、整齐度、比强度和马克隆值有显著影响,但对纤维伸长率影响达不到显著水平。N1处理和D1处理的纤维品质综合表现最优,但D0处理马克隆值最佳。N肥与DPC用量互作对“四桃”的纤维比强度和马克隆值有显著影响,其中, N1D1处理“四桃”的比强度和马克隆值均表现最优,而N2D2处理“四桃”的比强度和马克隆值表现最差。此外,过量施N和过量喷施DPC均会升高马克隆值。(3)“四桃”的纤维品质存在差异。伏前桃的纤维品质除马克隆值最优外,其纤维长度、整齐度和比强度最差;伏桃和早秋桃的纤维长度、整齐度和比强度最优,但马克隆值表现最差,伸长率居中;晚秋桃的伸长率最优,其余品质指标均居中。研究结果丰富了“四桃”产量和品质差异的相关理论,并为棉花合理施N和喷施DPC以及“四桃”纤维的合理利用提供了科学依据。
文摘Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but it has a complex allotetraploid genome that contains at least 30000 genes in 2500