Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction...Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.展开更多
This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius c...This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius circle to scout a certain destination.As defenders,the UAVs are arranged into three layers:the forward layer,the midfield layer and the back layer.The co-defense mechanism,including the role derivation method of UAV swarm and a guidance law based on the co-defense front point,is introduced for UAV swarm to co-detect the intruder.Besides,five formations are designed for comparative analysis when ten UAVs are applied.Through Monte Carlo experiments and ablation experiment,the effectiveness of the proposed co-defense method has been verified.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
传统的协同搜索决策方法在目标引导和机间协同方面存在不足.研究建立了基于分布概率预测的目标概率图(Target probability map,TPM)初始化方法和基于贝叶斯准则的目标概率图动态更新方法,形成了修正目标概率图(Modified TPM,MTPM)及其...传统的协同搜索决策方法在目标引导和机间协同方面存在不足.研究建立了基于分布概率预测的目标概率图(Target probability map,TPM)初始化方法和基于贝叶斯准则的目标概率图动态更新方法,形成了修正目标概率图(Modified TPM,MTPM)及其运算机理.考虑对任务子区域进行可控回访,定义了数字信息素图(Digital pheromone map,DPM),建立了数字信息素图使用方法及更新机理.设计了基于MTPM和DPM的寻优指标,建立了基于滚动时域控制的协同搜索决策方法(MTPM-DPM-RHC method,MDR).仿真表明:1)MTPM能有效降低对目标的虚警率和漏检率;2)DPM能有效实现对任务区域可控回访;3)MDR方法的遍历能力、重访能力和目标搜索效率均优于已有方法.展开更多
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金supported by the National Natural Science Foundation of China(60974146)the Natural Science and Engineering Research Council of Canada(NSERC)
文摘Based on multiple unmanned aerial vehicles(UAVs) flight at a constant altitude,a fault-tolerant cooperative localization algorithm against global positioning system(GPS) signal loss due to GPS receiver malfunction is proposed.Contrast to the traditional means with single UAV,the proposed method is based on the use of inter-UAV relative range measurements against GPS signal loss and more suitable for the small-size and low-cost UAV applications.Firstly,for re-localizing an UAV with a malfunction in its GPS receiver,an algorithm which makes use of any other three healthy UAVs in the cooperative flight as the reference points for re-localization is proposed.Secondly,by using the relative ranges from the faulty UAV to the other three UAVs,its horizontal location can be determined after the GPS signal is lost.In order to improve an accuracy of the localization,a Kalman filter is further exploited to provide the estimated location of the UAV with the GPS signal loss.The Kalman filter calculates the variance of observations in terms of horizontal dilution of positioning(HDOP) automatically.Then,during each discrete computing time step,the best reference points are selected adaptively by minimizing the HDOP.Finally,two simulation examples in Matlab/Simulink environment with five UAVs in cooperative flight are shown to evaluate the effectiveness of the proposed method.
基金the Aeronautical Science Foundation of China(2020Z023053001).
文摘This paper studies a special defense game using unmanned aerial vehicle(UAV)swarm against a fast intruder.The fast intruder applies an offensive strategy based on the artificial potential field method and Apollonius circle to scout a certain destination.As defenders,the UAVs are arranged into three layers:the forward layer,the midfield layer and the back layer.The co-defense mechanism,including the role derivation method of UAV swarm and a guidance law based on the co-defense front point,is introduced for UAV swarm to co-detect the intruder.Besides,five formations are designed for comparative analysis when ten UAVs are applied.Through Monte Carlo experiments and ablation experiment,the effectiveness of the proposed co-defense method has been verified.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.