Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization mode...Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.展开更多
为改善接收端的探测效果,提出一种恒模发射波形和非匹配滤波器的联合设计方法,应用交替方向乘子法(alternating direction method of multipliers,ADMM)对所构造的数学优化模型进行了求解。通过引入多个辅助变量解除非凸优化问题和复杂...为改善接收端的探测效果,提出一种恒模发射波形和非匹配滤波器的联合设计方法,应用交替方向乘子法(alternating direction method of multipliers,ADMM)对所构造的数学优化模型进行了求解。通过引入多个辅助变量解除非凸优化问题和复杂约束的耦合关系,结合分式优化技术并构造分段阶跃函数,对子问题加以处理得出最优解。此外,还将此类联合优化设计扩展用于已知雷达发射波形基础上的接收端非匹配滤波器设计。仿真实验表明,所提出的联合设计方法可有效降低脉压输出的旁瓣。展开更多
基金Anhui Provincial Natural Science Foundation(Project for Youth:1908085QF252)Research Program of National University of Defense Technology(ZK19-10)。
文摘Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.
文摘为改善接收端的探测效果,提出一种恒模发射波形和非匹配滤波器的联合设计方法,应用交替方向乘子法(alternating direction method of multipliers,ADMM)对所构造的数学优化模型进行了求解。通过引入多个辅助变量解除非凸优化问题和复杂约束的耦合关系,结合分式优化技术并构造分段阶跃函数,对子问题加以处理得出最优解。此外,还将此类联合优化设计扩展用于已知雷达发射波形基础上的接收端非匹配滤波器设计。仿真实验表明,所提出的联合设计方法可有效降低脉压输出的旁瓣。