期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于CFasterVit-TFAM与COS-UMAP模型的滚动轴承故障诊断
1
作者 戚晓利 崔德海 +4 位作者 王志文 赵方祥 王兆俊 毛俊懿 杨文好 《振动与冲击》 北大核心 2025年第10期287-300,共14页
针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion at... 针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。 展开更多
关键词 故障诊断 滚动轴承 FasterVit 注意力机制 均匀流形逼近与投影 类距均值标准差损失函数
在线阅读 下载PDF
基于UMAP改进的多域特征提取方法及轴承故障诊断 被引量:6
2
作者 尹泽明 王彩年 +1 位作者 王智 毛范海 《组合机床与自动化加工技术》 北大核心 2024年第1期160-163,共4页
针对传统多域特征提取方法占用计算资源过大、分类精度不足等问题,提出了一种基于统一流行逼近与投影算法(UMAP)改进的多域特征提取方法。通过对原始信号进行多域特征采集结合UMAP的全局信息提取能力进行信息融合与低维映射重构特征集;... 针对传统多域特征提取方法占用计算资源过大、分类精度不足等问题,提出了一种基于统一流行逼近与投影算法(UMAP)改进的多域特征提取方法。通过对原始信号进行多域特征采集结合UMAP的全局信息提取能力进行信息融合与低维映射重构特征集;在此基础上将特征集输入到支持向量机中进行模型训练,实现轴承的故障识别与诊断。基于某大学公开的滚动轴承实验数据集对比分析了几种典型的优化算法与传统多域特征提取方法,证明所提方法识别滚动轴承故障状态的成功率为100%,验证了该方法的优越性。 展开更多
关键词 故障诊断 多域特征提取 统一流形逼近与投影 支持向量机
在线阅读 下载PDF
基于加权UMAP和改进BLS的锂电池温度预测
3
作者 黎耀康 杨海东 +2 位作者 徐康康 蓝昭宇 章润楠 《储能科学与技术》 CAS CSCD 北大核心 2024年第9期3006-3015,共10页
锂电池热过程的温度预测对锂电池的寿命管理和使用安全有着重要意义。一般电池管理系统热管理依赖准确的热过程模型。然而锂电池热过程的机理复杂,属于强非线性分布参数系统,具有参数时空耦合、时变、强非线性的特点,常规方法难以实现... 锂电池热过程的温度预测对锂电池的寿命管理和使用安全有着重要意义。一般电池管理系统热管理依赖准确的热过程模型。然而锂电池热过程的机理复杂,属于强非线性分布参数系统,具有参数时空耦合、时变、强非线性的特点,常规方法难以实现其热过程的精确建模。针对上述问题,提出了一种基于加权UMAP和改进BLS的三段式锂电池热过程建模方式。首先通过引入加权改进的均匀流形逼近与投影(weighted uniform manifold approximation and projection,WUMAP)降维算法解决非线性降维难题的同时保留了数据的全局与局部信息。然后利用一段宽度学习系统(broad learning system,BLS)模型对降维得到的时序数据预测。最后再通过一段粒子群算法优化的混合核宽度学习系统(particle swarm optimization-mixed kernel broad learning system,PSO-MKBLS)模型对时空域温度数据重构。为验证模型有效性,使用平板式32 Ah的Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_(2)三元软包锂电池的热过程建模试验。实验结果表明:最终模型与改进前相比,R2提高0.0546,MAE和RMSE分别降低0.0082和0.0092;同时与多个对比模型相比,相对误差ARE较低(在0.035以内),并且各误差指标也更好,证明模型具有良好的预测精度。 展开更多
关键词 分布参数系统 锂电池温度预测 加权均匀流形逼近与投影 混合核宽度学习系统
在线阅读 下载PDF
基于变分自编码器的流形学习降维方法
4
作者 冯琳琳 王长鹏 +1 位作者 吴田军 张讲社 《计算机辅助设计与图形学学报》 北大核心 2025年第3期439-445,共7页
针对科学数据集的规模和复杂性的迅速增长,现有的降维方法存在“拥挤问题”以及不能嵌入新样本的问题,提出了一种变分自编码器均匀流形近似与投影的数据降维方法.首先,为减小高维数据之间的耦合性,利用变分自编码器将数据压缩为潜在变量... 针对科学数据集的规模和复杂性的迅速增长,现有的降维方法存在“拥挤问题”以及不能嵌入新样本的问题,提出了一种变分自编码器均匀流形近似与投影的数据降维方法.首先,为减小高维数据之间的耦合性,利用变分自编码器将数据压缩为潜在变量;然后,运用均匀流形近似与投影进一步将潜在变量降维,使低维嵌入更好地保持原始数据之间的相似性关系;最后,将所提方法用训练集进行拟合,并嵌入一个样本外测试集来评估对新数据的泛化能力.实验结果表明,在MNIST和Fashion-MNIST数据集上,与UMAP,DensMAP,VAE和AE这4个优秀降维方法相比,所提方法的可信度得分分别达到0.9944和0.9939,超越了当前最好方法UMAP 0.0316和0.0141,同时在可视化、Kendall秩相关系数以及分类精度评价指标上也有显著的改进. 展开更多
关键词 变分自编码器 均匀流形近似与投影 非线性降维 流形学习
在线阅读 下载PDF
基于均匀流型逼近与投影的高级加密标准算法相关功耗分析方法
5
作者 张润莲 唐瑞锋 +1 位作者 王蒿 武小年 《计算机应用》 北大核心 2025年第6期1895-1901,共7页
侧信道攻击(SCA)中所采集的能量迹数据的高噪声和高维度大幅降低了SCA的效率和密钥恢复的准确率。针对上述问题,提出一种基于均匀流型逼近与投影(UMAP)的高级加密标准(AES)算法相关功耗分析(CPA)方法。所提方法基于欧氏距离计算能量迹... 侧信道攻击(SCA)中所采集的能量迹数据的高噪声和高维度大幅降低了SCA的效率和密钥恢复的准确率。针对上述问题,提出一种基于均匀流型逼近与投影(UMAP)的高级加密标准(AES)算法相关功耗分析(CPA)方法。所提方法基于欧氏距离计算能量迹数据的邻近点集合。首先,通过构建邻接图并计算邻近点之间的相似度得到加权邻接图,从而捕获能量迹数据之间的位置关系以保留数据的局部结构特征;其次,利用拉普拉斯矩阵描述邻接图的结构关系,并通过特征分解取特征值较小的特征向量作为初始化的低维数据;同时,为了保留数据的全局结构特征,使用二进制交叉熵作为优化函数调整数据在低维空间中的位置;此外,为了提升计算效率,在梯度下降过程中使用力导向图布局算法;最后,对降维后的数据进行相关功耗攻击以恢复密钥。实验结果表明,UMAP方法能够有效保留原始能量迹数据的局部和全局结构特征;所提方法能够提高能量迹数据和假设功耗泄露模型之间的相关性,减少恢复密钥所需的能量迹条数,具体地,所提方法恢复单个密钥字节需要的能量迹条数为180,恢复全部16个密钥字节需要的能量迹条数为700;相较于等距特征映射(ISOMAP)降维方法,所提方法恢复所有密钥字节所需的能量迹条数减少了36.4%。 展开更多
关键词 侧信道攻击 均匀流型逼近与投影 相关功耗分析 数据降维 加权邻接图
在线阅读 下载PDF
基于多域特征提取的气液两相流流型识别 被引量:5
6
作者 张立峰 王智 《计量学报》 CSCD 北大核心 2023年第10期1509-1516,共8页
针对气液两相流的准确识别问题提出了一种多域特征处理方案。利用电阻层析成像(ERT)系统获取垂直上升管道流动数据,从测量数据与截面电导率分布图像两方面分析,对高维测量数据降维处理后提取时域特征,同时提取线性反投影(LBP)算法重建... 针对气液两相流的准确识别问题提出了一种多域特征处理方案。利用电阻层析成像(ERT)系统获取垂直上升管道流动数据,从测量数据与截面电导率分布图像两方面分析,对高维测量数据降维处理后提取时域特征,同时提取线性反投影(LBP)算法重建图像空域特征,进一步对图像进行Walsh-Hadamard变换后提取列率域特征。使用统一流形逼近与投影(UMAP)算法对量化的多域特征降维处理,最后搭建支持向量机(SVM)实现流型识别。结果表明,该流型分类框架对泡状流、泡状-段塞过渡流型、段塞流及严重段塞流的分类准确率分别为98.1%、96.3%、95.2%、94.8%。 展开更多
关键词 计量学 流型识别 电阻层析成像 Walsh-Hadamard变换 统一流形逼近和投影 多域特征 气液两相流
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部