The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to mode...The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to model the C41SR architecture. The paper presents an approach to modeling the capability requirements with the fuzzy unified modeling language (UML) and building domain ontologies with fuzzy description logic (DL). The UML modeling constructs are extended according to the meta model of Depart- ment of Defense Architecture Framework to improve their domain applicability, the fuzzy modeling mechanism is introduced to model the fuzzy efficiency features of capabilities, and the capability requirement models are converted into ontologies formalized in fuzzy DL so that the model consistency and reasonability can be checked with a DL reasoning system. Finally, a case study of C41SR capability requirements model checking is provided to demonstrate the availability and applicability of the method.展开更多
在企业的招商引资过程中,存在多维度的风险。传统的风险评估方法由于信息失真以及经济行为中的复杂关系,难以及时且准确地识别这些风险。为解决上述问题,提出一种将大型语言模型(LLM)与图神经网络(GNN)融合的风险分析框架。利用LLM的语...在企业的招商引资过程中,存在多维度的风险。传统的风险评估方法由于信息失真以及经济行为中的复杂关系,难以及时且准确地识别这些风险。为解决上述问题,提出一种将大型语言模型(LLM)与图神经网络(GNN)融合的风险分析框架。利用LLM的语义理解能力,辅助GNN构建全面、准确的动态企业异构知识图谱,从而解决静态数据引起的信息失真问题。在此基础上,针对GNN在深度和语义表达能力上的不足,设计一个基于知识的语义结构挖掘模块,并结合Qwen2大模型增强节点表示的语义精准性。此外,提出一体化图(IOG)模块将节点分类与图分类任务统一为对“关注节点”的预测。通过统一预测机制,实现对不同图结构类型的预测,从而显著提升模型在不同数据集上的泛化能力。基于该框架构建的IOG-CIQAN(In One Graph with Collective Intelligence and Qwen2 Assistance Network)模型在劳工、财务、行政这3个风险分析数据集上的准确率均超过了87%,优于胶囊网络(CapsNet)等多种基线模型。展开更多
文摘The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to model the C41SR architecture. The paper presents an approach to modeling the capability requirements with the fuzzy unified modeling language (UML) and building domain ontologies with fuzzy description logic (DL). The UML modeling constructs are extended according to the meta model of Depart- ment of Defense Architecture Framework to improve their domain applicability, the fuzzy modeling mechanism is introduced to model the fuzzy efficiency features of capabilities, and the capability requirement models are converted into ontologies formalized in fuzzy DL so that the model consistency and reasonability can be checked with a DL reasoning system. Finally, a case study of C41SR capability requirements model checking is provided to demonstrate the availability and applicability of the method.
文摘在企业的招商引资过程中,存在多维度的风险。传统的风险评估方法由于信息失真以及经济行为中的复杂关系,难以及时且准确地识别这些风险。为解决上述问题,提出一种将大型语言模型(LLM)与图神经网络(GNN)融合的风险分析框架。利用LLM的语义理解能力,辅助GNN构建全面、准确的动态企业异构知识图谱,从而解决静态数据引起的信息失真问题。在此基础上,针对GNN在深度和语义表达能力上的不足,设计一个基于知识的语义结构挖掘模块,并结合Qwen2大模型增强节点表示的语义精准性。此外,提出一体化图(IOG)模块将节点分类与图分类任务统一为对“关注节点”的预测。通过统一预测机制,实现对不同图结构类型的预测,从而显著提升模型在不同数据集上的泛化能力。基于该框架构建的IOG-CIQAN(In One Graph with Collective Intelligence and Qwen2 Assistance Network)模型在劳工、财务、行政这3个风险分析数据集上的准确率均超过了87%,优于胶囊网络(CapsNet)等多种基线模型。
基金Supported by the National Natural Science Foundation of China under Grant No.60473064(国家自然科学基金)the National High-Tech Research and Development Plan of China under Grant Nos.2007AA010301,2005AA112030(国家高技术研究发展计划(863))+2 种基金the National Basic Research Program of China under Grant No.2005CB321805(国家重点基础研究发展计划(973))the Key Technologies R&D Program of China under Grant No.2003BA904B02 (国家科技攻关计划)the National Key Technology R&D Program of China under Grant No.2006BAH02A02(国家科技支撑计划)