期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Two Second-Order Ecient Numerical Schemes for the Boussinesq Equations
1
作者 LIU Fang WANG Danxia ZHANG Jianwen 《应用数学》 北大核心 2025年第1期114-129,共16页
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t... In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes. 展开更多
关键词 Scalar auxiliary variable approach Pressure-correction method Fully decoupled unconditional stability Boussinesq equations
在线阅读 下载PDF
A New Class of Efficient Schemes for the Cahn-Hilliard-Navier-Stokes Equations
2
作者 WANG Lijing WANG Danxia ZHANG Jianwen 《应用数学》 北大核心 2025年第3期607-624,共18页
In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary varia... In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically. 展开更多
关键词 Cahn-Hilliard-Navier-Stokes equation Scalar auxiliary variable Pressurecorrection unconditional energy stability
在线阅读 下载PDF
A Fast Algorithm for Solving the Poisson Equations Based on the Discrete Cosine/Sine Transforms in the Finite Difference Method
3
作者 LI Congcong WANG Danxia +1 位作者 JIA Hongen ZHANG Chenhui 《应用数学》 北大核心 2025年第3期651-669,共19页
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c... To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%. 展开更多
关键词 Phase-field model Finite difference method Fast Poisson solver(DC-T/DST) Explicit invariant energy quadratization unconditional energy stability
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部