To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method...To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.展开更多
In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM)...In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.展开更多
The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce...The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.展开更多
In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most crit...In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over.展开更多
The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov ...The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.展开更多
Indirect approaches to estimation of biomass factors are often applied to measure carbon flux in the forestry sector. An assumption underlying a country-level carbon stock estimate is the representativeness of these f...Indirect approaches to estimation of biomass factors are often applied to measure carbon flux in the forestry sector. An assumption underlying a country-level carbon stock estimate is the representativeness of these factors. Although intensive studies have been conducted to quantify biomass factors, each study typically covers a limited geographic area. The goal of this study was to employ a meta-analysis approach to develop regional bio- mass factors for Quercus mongolica forests in South Korea. The biomass factors of interest were biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF) and root-to-shoot ratio (RSR). Our objectives were to select probability density functions (PDFs) that best fitted the three biomass factors and to quantify their means and uncertainties. A total of 12 scientific publications were selected as data sources based on a set of criteria. Fromthese publications we chose 52 study sites spread out across South Korea. The statistical model for the meta- analysis was a multilevel model with publication (data source) as the nesting factor specified under the Bayesian framework. Gamma, Log-normal and Weibull PDFs were evaluated. The Log-normal PDF yielded the best quanti- tative and qualitative fit for the three biomass factors. However, a poor fit of the PDF to the long right tail of observed BEF and RSR distributions was apparent. The median posterior estimates for means and 95 % credible intervals for BCEF, BEF and RSR across all 12 publica- tions were 1.016 (0.800-1.299), 1.414 (1.304-1.560) and 0.260 (0.200-0.335), respectively. The Log-normal PDF proved useful for estimating carbon stock of Q. mongolica forests on a regional scale and for uncertainty analysis based on Monte Carlo simulation.展开更多
One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state...One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.展开更多
We quantified deviations in regional forest biomass from simple extrapolation of plot data by the biomass expansion factor method(BEF) versus estimates obtained from a local biomass model,based on large-scale empiri...We quantified deviations in regional forest biomass from simple extrapolation of plot data by the biomass expansion factor method(BEF) versus estimates obtained from a local biomass model,based on large-scale empirical field inventory sampling data.The sources and relative contributions of deviations between the two models were analyzed by the boosted regression trees method.Relative to the local model,BEF overestimated accumulative biomass by 22.12%.The predominant sources of the total deviation (70.94%) were stand-structure variables.Stand age and diameter at breast height are the major factors.Compared with biotic variables,abiotic variables had a smaller overall contribution (29.06%),with elevation and soil depth being the most important among the examined abiotic factors.Large deviations in regional forest biomass and carbon stock estimates are likely to be obtained with BEF relative to estimates based on local data.To minimize deviations,stand age and elevation should be included in regional forest-biomass estimation.展开更多
A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out....A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant 52175099)the China Postdoctoral Science Foundation(Grant No.2020M671494)+1 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2020Z179)the Nanjing University of Science and Technology Independent Research Program(Grant No.30920021105)。
文摘To improve the hit probability of tank at high speed,a prediction method of projectile-target intersection based on adaptive robust constraint-following control and interval uncertainty analysis is proposed.The method proposed provides a novel way to predict the impact point of projectile for moving tank.First,bidirectional stability constraints and stability constraint-following error are constructed using the Udwadia-Kalaba theory,and an adaptive robust constraint-following controller is designed considering uncertainties.Second,the exterior ballistic ordinary differential equation with uncertainties is integrated into the controller,and the pointing control of stability system is extended to the impact-point control of projectile.Third,based on the interval uncertainty analysis method combining Chebyshev polynomial expansion and affine arithmetic,a prediction method of projectile-target intersection is proposed.Finally,the co-simulation experiment is performed by establishing the multi-body system dynamic model of tank and mathematical model of control system.The results demonstrate that the prediction method of projectile-target intersection based on uncertainty analysis can effectively decrease the uncertainties of system,improve the prediction accuracy,and increase the hit probability.The adaptive robust constraint-following control can effectively restrain the uncertainties caused by road excitation and model error.
基金Project supported by the National Natural Science Foundation of China(Grant No.41474161)the National High-Technology Program of China(Grant No.2015AA123703)
文摘In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors,a transfer chain consisting of a fiber coupling monochromator(FBM) and an integrating sphere transfer radiometer(ISTR) was designed in this paper.Depending on the Sun,this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band(RSB) covering 300–2500 nm with a spectral bandwidth of 0.5–6 nm.It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard.This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor,including the weak spectral signal measurement with uncertainty of 0.28%.According to the peculiar design and comprehensive uncertainty analysis,it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%.The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
基金This work was supported financially by the National Natural Science Foundation of China(No.12375176).
文摘The phenomenology involved in severe accidents in nuclear reactors is highly complex.Currently,integrated analysis programs used for severe accident analysis heavily rely on custom empirical parameters,which introduce considerable uncertainty.Therefore,in recent years,the field of severe accidents has shifted its focus toward applying uncertainty analysis methods to quantify uncertainty in safety assessment programs,known as“best estimate plus uncertainty(BEPU).”This approach aids in enhancing our comprehension of these programs and their further development and improvement.This study concentrates on a third-generation pressurized water reactor equipped with advanced active and passive mitigation strategies.Through an Integrated Severe Accident Analysis Program(ISAA),numerical modeling and uncertainty analysis were conducted on severe accidents resulting from large break loss of coolant accidents.Seventeen uncertainty parameters of the ISAA program were meticulously screened.Using Wilks'formula,the developed uncertainty program code,SAUP,was employed to carry out Latin hypercube sampling,while ISAA was employed to execute batch calculations.Statistical analysis was then conducted on two figures of merit,namely hydrogen generation and the release of fission products within the pressure vessel.Uncertainty calculations revealed that hydrogen production and the fraction of fission product released exhibited a normal distribution,ranging from 182.784 to 330.664 kg and from 15.6 to 84.3%,respectively.The ratio of hydrogen production to reactor thermal power fell within the range of 0.0578–0.105.A sensitivity analysis was performed for uncertain input parameters,revealing significant correlations between the failure temperature of the cladding oxide layer,maximum melt flow rate,size of the particulate debris,and porosity of the debris with both hydrogen generation and the release of fission products.
文摘In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over.
基金Project supported by the National Natural Science Foundation of China (Grant No. 41105013)the National Natural Science Foundation of Jiangsu Province,China (Grant No. BK2011122)+1 种基金the Open Issue Foundation of Key Laboratory of Meteorological Disaster of Ministry of Education,China (Grant No. KLME1109)the City Meteorological Scientific Research Fund,China (Grant No. IUMKY&UMRF201111)
文摘The estimation of lower atmospheric refractivity from radar sea clutter(RFC) is a complicated nonlinear optimization problem.This paper deals with the RFC problem in a Bayesian framework.It uses the unbiased Markov Chain Monte Carlo(MCMC) sampling technique,which can provide accurate posterior probability distributions of the estimated refractivity parameters by using an electromagnetic split-step fast Fourier transform terrain parabolic equation propagation model within a Bayesian inversion framework.In contrast to the global optimization algorithm,the Bayesian-MCMC can obtain not only the approximate solutions,but also the probability distributions of the solutions,that is,uncertainty analyses of solutions.The Bayesian-MCMC algorithm is implemented on the simulation radar sea-clutter data and the real radar seaclutter data.Reference data are assumed to be simulation data and refractivity profiles are obtained using a helicopter.The inversion algorithm is assessed(i) by comparing the estimated refractivity profiles from the assumed simulation and the helicopter sounding data;(ii) the one-dimensional(1D) and two-dimensional(2D) posterior probability distribution of solutions.
文摘Indirect approaches to estimation of biomass factors are often applied to measure carbon flux in the forestry sector. An assumption underlying a country-level carbon stock estimate is the representativeness of these factors. Although intensive studies have been conducted to quantify biomass factors, each study typically covers a limited geographic area. The goal of this study was to employ a meta-analysis approach to develop regional bio- mass factors for Quercus mongolica forests in South Korea. The biomass factors of interest were biomass conversion and expansion factor (BCEF), biomass expansion factor (BEF) and root-to-shoot ratio (RSR). Our objectives were to select probability density functions (PDFs) that best fitted the three biomass factors and to quantify their means and uncertainties. A total of 12 scientific publications were selected as data sources based on a set of criteria. Fromthese publications we chose 52 study sites spread out across South Korea. The statistical model for the meta- analysis was a multilevel model with publication (data source) as the nesting factor specified under the Bayesian framework. Gamma, Log-normal and Weibull PDFs were evaluated. The Log-normal PDF yielded the best quanti- tative and qualitative fit for the three biomass factors. However, a poor fit of the PDF to the long right tail of observed BEF and RSR distributions was apparent. The median posterior estimates for means and 95 % credible intervals for BCEF, BEF and RSR across all 12 publica- tions were 1.016 (0.800-1.299), 1.414 (1.304-1.560) and 0.260 (0.200-0.335), respectively. The Log-normal PDF proved useful for estimating carbon stock of Q. mongolica forests on a regional scale and for uncertainty analysis based on Monte Carlo simulation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305156 and 11305159
文摘One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.
基金supported by the Major Research Development Program of China(2016YFC0502704)National Science Foundation of China(31670645,31470578 and 31200363)+4 种基金National Forestry Public Welfare Foundation of China(201304205)Fujian Provincial Department of S&T Project(2013YZ0001-1,2015Y0083,2016Y0083,2016T3037 and 2016T3032)Key Laboratory of Urban Environment and Health of CAS(KLUEH-C-201701)Youth Innovation Promotion Association CAS(2014267)Key Program of the Chinese Academy of Sciences(KFZDSW-324)
文摘We quantified deviations in regional forest biomass from simple extrapolation of plot data by the biomass expansion factor method(BEF) versus estimates obtained from a local biomass model,based on large-scale empirical field inventory sampling data.The sources and relative contributions of deviations between the two models were analyzed by the boosted regression trees method.Relative to the local model,BEF overestimated accumulative biomass by 22.12%.The predominant sources of the total deviation (70.94%) were stand-structure variables.Stand age and diameter at breast height are the major factors.Compared with biotic variables,abiotic variables had a smaller overall contribution (29.06%),with elevation and soil depth being the most important among the examined abiotic factors.Large deviations in regional forest biomass and carbon stock estimates are likely to be obtained with BEF relative to estimates based on local data.To minimize deviations,stand age and elevation should be included in regional forest-biomass estimation.
基金Huo Yingdong Education Foundation Young Teachers Fund for Higher Education Institutions(171043)Sichuan Outstanding Young Science and Technology Talent Project(2019JDJQ0036)。
文摘A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.