Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrason...Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.展开更多
搭建蒸汽测试实验系统,结合经典ECAH(Epstein-Carhart-Allegra-Hawley)理论模型,提出三频率超声波声衰减颗粒测量方法,采用中心频率为22,40和200 k Hz的超声波开展蒸汽液滴粒径和含量(体积分数)的超声法测量实验,在相同工况下基于光散...搭建蒸汽测试实验系统,结合经典ECAH(Epstein-Carhart-Allegra-Hawley)理论模型,提出三频率超声波声衰减颗粒测量方法,采用中心频率为22,40和200 k Hz的超声波开展蒸汽液滴粒径和含量(体积分数)的超声法测量实验,在相同工况下基于光散射法的原理,同时开展多波长消光法和激光散射法对比测试研究。实验结果表明:超声衰减法测得蒸汽液滴粒径和含量与消光法和激光散射法的测量值接近,超声衰减法有望用于气液两相流中蒸汽液滴粒径以及含量(湿度)参数的在线监测。展开更多
基金Project supported by Technology Development and Research Special Foundation of National Science Research Academicand Institute , China
文摘Based on various ultrasonic loss mechanisms, the formula of the cumulative mass percentage of minerals with different particle sizes was given, with which the particle size distribution was integrated into an ultrasonic attenuation model. And then the correlations between the ultrasonic attenuation and the pulp density, and the particle size were obtained. The derived model was combined with the experiment and the analysis of experimental data to determine the inverse model relating ultrasonic attenuation coefficient with size distribution. Finally, an optimization method of inverse parameter, genetic algorithm was applied for particle size distribution. The results of inverse calculation show that the precision of measurement was high.
文摘搭建蒸汽测试实验系统,结合经典ECAH(Epstein-Carhart-Allegra-Hawley)理论模型,提出三频率超声波声衰减颗粒测量方法,采用中心频率为22,40和200 k Hz的超声波开展蒸汽液滴粒径和含量(体积分数)的超声法测量实验,在相同工况下基于光散射法的原理,同时开展多波长消光法和激光散射法对比测试研究。实验结果表明:超声衰减法测得蒸汽液滴粒径和含量与消光法和激光散射法的测量值接近,超声衰减法有望用于气液两相流中蒸汽液滴粒径以及含量(湿度)参数的在线监测。