The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire ...The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to...Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H...Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.展开更多
A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained...A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.展开更多
The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modifi...The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modification of H3PW12O40(40%)/SiO2 gave the most promising result of 20% dimethyl ether conversion and 34.8% dimethoxymethane selectivity. Dimethoxymethane could be synthe- sized via methoxy groups decomposed from dimethyl ether through the synergistic effect between the acid sites and the redox sites of Cs modified H3PW12O40(40%)/SiO2.展开更多
Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). Thi...Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.展开更多
Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperatur...Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850℃. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.展开更多
Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmissi...Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmission electron microscope(TEM) and Fourier transform infrared(FTIR) spectrometer.The results show that the nanometer particles of extract,which were free of ash,are superfine and superclean with tract content of 0.02% A d and particles size of about 100-150 nm.TTC and extract were then subject to oxidation with H 2 O 2 and oxidation products were subsequently analyzed with FTIR and gas chromatography/mass spectrometer(GC/MS).The results show that extract is more reactive with H 2 O 2 in comparison to TTC and richer in oxygen-containing species including phenols,alcohols,ethers,esters,carboxylic acids and anhydrides.展开更多
Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor perfor...Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor performance due to CO poisoning of the leading-high cost anode catalyst.In line with this,we have successfully modified the morphological structure and composition of low cost cobalt based-metal oxides,MCo_2O_4(M = Zn and Ni),with the simple and noble use of polyvinyl pyrrolidone(PVP) as growth modifier and surface stabilizer during the synthesis of nanoparticles in our previous reports,which shown high electrocatalytic activity and strong stability.Due to the good performance of our PVP modified MCo_2O_4 towards pseudocapacitor and oxygen evolution reaction applications,we decided to extend our research study to methanol oxidation reaction.Remarkably,PVP modified Ni Co_2O_4 electrode directly grown on nickel foam substrate via a simple hydrothermal process exhibited better performance compared with PVP modified ZnCo_2O_4 and NiCo_2O_4 without PVP.It had obtained a remarkably low onset potential of 0.285 V and high current density of 280 m A cm^(-2),and shown great stability and high poison tolerance during a continuous CV cycling and Chronoamperometry test,which attained high efficiency of 86.86%and 98.52%,respectively.These positive results of PVP modified Ni Co_2O_4 electrode towards MOR might be attributed to its hierarchical 3 D nanostructures with highly mesoporous surface and large surface area which may have provided numerous electroactive sites,and the exceptional corrosion stability of Ni Co_2O_4 electrode in alkaline solution.展开更多
Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelect...Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.展开更多
In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative...In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.展开更多
Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for a...Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.展开更多
MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was ev...MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
基金supported by the Swedish Energy Agency(P47500-1)the National Key R&D Program of China(2020YFA0710200)+2 种基金the National Natural Science Foundation of China(22378401 and U22A20416)the financial support from STINT(CH2019-8287)financial support from the European Union and Swedish Energy Agency(P2020-90066).
文摘The catalytic oxidation of HMF involves a cascading reaction with multiple intermediate products,making it crucial to enhance the oriented adsorption capacity of specific functional groups for accelerating the entire process.To achieve the efficient selective oxidation of HMF to FDCA,a series of NiCo_(2)O_(4)catalysts with different morphologies,such as flaky,echinoids,pompon and corolla,were prepared and characterized by XRD,SEM,TEM,BET,XPS,and FTIR.Among the four catalysts,flaky NiCo_(2)O_(4)exhibited the most excellent catalytic activity and stability,with a FDCA yield of 60.1%within 12 h at 80℃without alkali participation.The excellent performance of flaky NiCo_(2)O_(4)catalyst is attributed to the oxygen vacancies and acid sites generated by the exposed(400)facets.The oxygen vacancies and acid sites on the catalyst surface can precisely adsorb-CHO and-CH_(2)-OH of HMF,respectively,and this synergistic effect promotes the efficient production of FDCA.This work is of great significance for fundamentally study the effect of micro-topography or crystal-plane reaction properties on surfaces.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金supported by the Postdoctoral Fellowship Program(Grade A)of China Postdoctoral Science Foundation(No.BX20240429)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2024ZD1004007)+3 种基金the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)the National Natural Science Foundation of China(No.52204298)the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the High Performance Computing Center of Central South University。
文摘Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.
基金funded by the National Natural Science Foundation of China(Grant Nos.22279092 and 5202780089).
文摘Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
文摘A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process, and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.
基金Foundation items:the National Natural Science Foundation of China(No.20373085)the Natural Science Foundation of Shanxi Province(No.20051023)
文摘The attractive utilization route for one-step catalytic oxidation of dimethyl ether to dimethoxymethane was successfully carried out over the H3PW12O40(40%)/SiO2 catalyst, modified by Cs, K, Ni, and V. The Cs modification of H3PW12O40(40%)/SiO2 gave the most promising result of 20% dimethyl ether conversion and 34.8% dimethoxymethane selectivity. Dimethoxymethane could be synthe- sized via methoxy groups decomposed from dimethyl ether through the synergistic effect between the acid sites and the redox sites of Cs modified H3PW12O40(40%)/SiO2.
基金the Post-Doctorial Foundation of China(No.20060400928)the Post-Doctorial Foundation of Jiangsu Province(No.0602001B)
文摘Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.
基金supported by the Ministry of Science and Technology of China (2005CB221401)the National Natural Science Foundation of China(20873111)the Key Science & Technology Specific Projects of Fujian Province (2009HZ10102)
文摘Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al2O3 in the temperature range of 600 to 850℃. XRD, H2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species, i.e. the ruthenium species weakly interacted with Al2O3 and that strongly interacted with the support, were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations, in turn, were the result of temperature variations caused by the varying levels of the strongly exothermic CH4 combustion and the highly endothermic CH4 reforming (with H2O and CO2) reactions (or the less exothermic direct partial oxidation of methane to CO and H2), which were favored by the oxidized and the metallic sites, respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.
基金subsidized by the National Natural Science Foundation of China (Nos.50474066,50874108 and 50921002)the Fundamental Research Funds for the Central Universities(No.2010LKHX01)the National Basic Research Program of China (No.2012CB214900)
文摘Tongting coal(TTC) was exhaustively extracted with carbon disulfide and N-melthy-2-pyrolidinone(CS 2 /NMP) mixed solvents to afford brown particles of extract,which was characterized with proximate analyzer,transmission electron microscope(TEM) and Fourier transform infrared(FTIR) spectrometer.The results show that the nanometer particles of extract,which were free of ash,are superfine and superclean with tract content of 0.02% A d and particles size of about 100-150 nm.TTC and extract were then subject to oxidation with H 2 O 2 and oxidation products were subsequently analyzed with FTIR and gas chromatography/mass spectrometer(GC/MS).The results show that extract is more reactive with H 2 O 2 in comparison to TTC and richer in oxygen-containing species including phenols,alcohols,ethers,esters,carboxylic acids and anhydrides.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) - Grants funded by the Ministry of Trade,Industry and Energy (MOTIE) (No.20174010201160)the National Research Foundation of Korea (NRF) - Grant funded by the Ministry of Education (No.20090093816),Republic of Korea
文摘Up to this date,researchers are still facing difficulties to expand the technology of direct methanol fuel cells(DMFCs) because of the high overpotential required to oxidize the methanol and its relatively poor performance due to CO poisoning of the leading-high cost anode catalyst.In line with this,we have successfully modified the morphological structure and composition of low cost cobalt based-metal oxides,MCo_2O_4(M = Zn and Ni),with the simple and noble use of polyvinyl pyrrolidone(PVP) as growth modifier and surface stabilizer during the synthesis of nanoparticles in our previous reports,which shown high electrocatalytic activity and strong stability.Due to the good performance of our PVP modified MCo_2O_4 towards pseudocapacitor and oxygen evolution reaction applications,we decided to extend our research study to methanol oxidation reaction.Remarkably,PVP modified Ni Co_2O_4 electrode directly grown on nickel foam substrate via a simple hydrothermal process exhibited better performance compared with PVP modified ZnCo_2O_4 and NiCo_2O_4 without PVP.It had obtained a remarkably low onset potential of 0.285 V and high current density of 280 m A cm^(-2),and shown great stability and high poison tolerance during a continuous CV cycling and Chronoamperometry test,which attained high efficiency of 86.86%and 98.52%,respectively.These positive results of PVP modified Ni Co_2O_4 electrode towards MOR might be attributed to its hierarchical 3 D nanostructures with highly mesoporous surface and large surface area which may have provided numerous electroactive sites,and the exceptional corrosion stability of Ni Co_2O_4 electrode in alkaline solution.
基金supported by the National Program for Key Basic Research Projects (973 Program) of China (Grant No. 2011CBA00607)the National Natural Science Foundation of China (Grant Nos. 61106089 and 51102048)+2 种基金the National Science and Technology Major Projects (Grant No. 2009ZX02035)the State Key Laboratory of ASIC and System Project (Grant No. 11MS017)the Open Funds of State Key Laboratory of ASIC and System at Fudan University (Grant No. 10KF001)
文摘Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.
文摘In this study,an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method.The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode.The nanoparticles of MoS2 were found to have a zeta potential of-25 mV,which prevents suspension in the solution.Thus,to produce an Al2O3/MoS2 nanocomposite,one has to use the microparticles of MoS2.The X-ray diffraction analyses showed that the produced coatings containedα-Al2O3,γ-Al2O3,and MoS2,and that the size of MoS2 particles can be reduced to 30 nm.It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite.Using the results,it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.
文摘Soil samples were taken from depth of 0-12cm in the virgin broad- leaved/Korean pine mixed forest in Changbai Mountain in April, 2000. 20 μL·L-1 and 200 μL·L-1 CH4 and N2O concentration were supplied for analysis. Laboratory study on CH4 oxidation and N2O emission in forest soil showed that fresh soil sample could oxidize atmospheric methane and product N2O. Air-dried soil sample could not oxidize atmospheric methane, but could produCt N2O. However, it could oxidize the supplied methane quickly when its concentration was higher than 20 μL·L-1. The oxidation rate of methane was increased with its initial concentration. An addition of water to dry soil caused large pulse of N2O emissions within 2 hours. There were curvilinear correlations between N2O emission and temperature (r2=0.706, p <0.05), and between N2O emission andtwater content (r2=0.2968. p <0.05). These suggested temperature and water content were important factors controlling N2O emission. The correlation between CH4 oxidization and temperature was also found while CH4 was supplied 200 μL·L-1 (r2 =0.3573, p<0.05). Temperature was an important f8Ctor controlling CH4 oxidation. However, when 20 μL·L-1 CH4 was supplied, there was no correlation among CH4 oxidization, N2O emission, temperature and water content.
文摘MgO/Al2O3 and Fe2O3/MgO/Al2O3 solid bases were prepared through mixing method. After sulfonated cobalt phthalocyanine (CoPcS) being supported on these solid bases, the catalytic performance of these catalysts was evaluated by means of mercaptan oxidation reaction. The samples were characterized by X-ray diffraction (XRD), CO2 temperature-programmed desorption (CO2-TPD), FTIR spectroscopy, and X-ray photoelectron spectroscopy (XPS). Investigation was focused on the effect of Fe2O3 on activity, crystal structure, basicity, and stability of the catalyst and also on the role of Fe2O3 in the mercaptan oxidation processes. Test results have shown that the Fe2O3/MgO/Al2O3- CoPcS catalyst has a higher initial activity and a much longer service life than the MgO/Al2O3-CoPcS catalyst. The increased types of basic sites coupled with an enhanced oxidation ability resulted from the addition of Fe2O3 have contributed to the improvement of the catalytic activity of the MgO/Al2O3-CoPcS catalyst.
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.