Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultim...Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.展开更多
Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framewor...Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consumin...There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.展开更多
An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's a...Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's and ЪерезанцевВГ's methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi's method gives higher ultimate capacity, while the other two methods shows good agreement with the field results.展开更多
In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyze...In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods.展开更多
The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mini...The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.展开更多
In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimat...In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection.展开更多
A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield...A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations.展开更多
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the...Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.展开更多
By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle ...By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.展开更多
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e...The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.展开更多
Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at t...Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at the interface of expansive soil-structure are presented as follows: linear relation can approximately reflect changes between the both shear stress and the three factors: vertical load, water content and dry density, just different degrees from each other; increasing the vertical load from 25 kPa to 100 kPa (up by 300%) can cause the average increase of ultimate shear stress from 58% (for samples with 1.61 g/cm^3) to 80% (for samples with 1.76 g/cm^3), and an close average increase of 180% for the residual shear stress; increasing the water content from 14.1% to 20.8% (up by 47.5%) can cause the average decrease of the ultimate shear stress from 40% (for samples with 25 kPa) to 80% (for samples with 100 kPa), and the average decrease from 25% (for samples with 25 kPa) to 30% (for samples with 100 kPa) for the residual shear stress; increasing the dry density from 1.61 g/cm^3 to 1.76 g/cm^3 (up by 9.3%) can cause the average increase of ultimate shear stress from 92% (for samples with 25 kPa) to 138% (for samples with 100 kPa), and an average increase of 4% for the residual shear stress. Sensitive analysis was further made to explain reasons causing the differences of the both shear stress induced by the three factors.展开更多
This paper presents an experimental study on the behavior of circular concrete columns reinforced by BFRP-PVC tubes under uniaxial loading.A total of six specimens were prepared and tested under uniaxial loading.The m...This paper presents an experimental study on the behavior of circular concrete columns reinforced by BFRP-PVC tubes under uniaxial loading.A total of six specimens were prepared and tested under uniaxial loading.The main parameters varied in the tests were strengthening ratio and strengthening approach of BFRP.The performance,such as failure modes,ultimate bearing capacity and stress-strain curves,was investigated in details and a formula was proposed to predict the compressive ultimate strength.The results show that this kind of confined columns obviously improves the ultimate bearing capacity,and the ultimate bearing capacity increases with the strengthening layers.The formula proposed is applicable and efficient for prediction of the ultimate bearing capacity as well.展开更多
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
基金Project(51478477)supported by the National Natural Science Foundation of ChinaProject(2016CX012)supported by the Innovation-driven Project of Central South University,ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.
基金Projects(51078359, 51208522) supported by the National Natural Science Foundation of ChinaProjects(20110491269, 2012T50708) supported by China Postdoctoral Science FoundationProject supported by Postdoctoral Science Foundation of Central South University, China
文摘Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
基金Projects(51575535,51805551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2018-15)supported by the of State Key Laboratory of High Performance Complex Manufacturing,China+1 种基金Project(2015CX002)supported by the Innovation-driven Plan in Central South University,ChinaProject(2018BB30501)supported by the Key R&D Program of Liuzhou City,China
文摘There have been a great demand for a suitable and convenient method in the field of buckling analysis of stiffened ship structures, which is essential to structural safety assessment and is significantly time-consuming. Modeling, buckling behaviors and ultimate strength prediction of stiffened panels were investigated. The modeling specification including nonlinear finite element model and imperfections generation, and post-buckling analysis procedure of stiffened plates were demonstrated. And a software tool using set-based finite element method was developed and executed in the MSC. Marc environment. Different types of stiffen panels of marine structures have been employed to investigate the buckling behavior and assess the validity in the estimation of ultimate strength. A comparison between results of the generally accepted methods, experiments and the software tool developed was demonstrated. It is shown that the software tool can predict the ultimate capacity of stiffened panels with imperfections with a good accuracy.
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
文摘Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's and ЪерезанцевВГ's methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi's method gives higher ultimate capacity, while the other two methods shows good agreement with the field results.
文摘In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods.
基金Project(2014ZDPY02)supported by the Fundamental Research Funds for the Central Universities
文摘The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed.
基金Foundation item: Projects(50708093, 50808159) supported by the National Natural Science Foundation of China
文摘In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection.
基金Project (200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject (09JJ1008) supported by Hunan Provincial Natural Science Foundation of China
文摘A new method was proposed to predict the limited compaction grouting pressure for the soft soils. Theoretical basis of the method considered the conical shear failure above the grout bulb. Using the Mohr-Coulomb yield criterion as the initial yield function, the limited compaction grouting pressure was determined, according to the softening elastic-plastic model based on the conventional triaxial compression tests to simulate the strain softening soils. The small strain in the elastic zone and large stain in the plastic zone and the rational yield function for the strain softening phase stage, the analytical solutions to the compaction grouting pressure were presented. The results indicate reasonable agreement and show a good potential of the proposed method for rationally optimizing the design of compaction grouting operations.
基金Project(51178457) supported by the National Natural Science Foundation of ChinaProject(cstc2012jjys0001) supported by the Natural Science Foundation of Chongqing,ChinaProject(L2011231) supported by the Liaoning Education Department,China
文摘Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.
基金Project(2014M560652)supported by China Postdoctoral Science FoundationProjects(2011CB013802,2013CB036004)supported by the National Basic Research Program of China
文摘By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.
文摘The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.
基金Projects(50378097 50678177) supported by the National Natural Science Foundation of ChinaProject (01JJY3043) supported by the Natural Science Foundation of Hunan Province, China
文摘Several groups of direct shear tests of Nanning expansive soil samples were carded out by improved direct shear apparatus. The results of the characteristics of the ultimate shear stress and residual shear stress at the interface of expansive soil-structure are presented as follows: linear relation can approximately reflect changes between the both shear stress and the three factors: vertical load, water content and dry density, just different degrees from each other; increasing the vertical load from 25 kPa to 100 kPa (up by 300%) can cause the average increase of ultimate shear stress from 58% (for samples with 1.61 g/cm^3) to 80% (for samples with 1.76 g/cm^3), and an close average increase of 180% for the residual shear stress; increasing the water content from 14.1% to 20.8% (up by 47.5%) can cause the average decrease of the ultimate shear stress from 40% (for samples with 25 kPa) to 80% (for samples with 100 kPa), and the average decrease from 25% (for samples with 25 kPa) to 30% (for samples with 100 kPa) for the residual shear stress; increasing the dry density from 1.61 g/cm^3 to 1.76 g/cm^3 (up by 9.3%) can cause the average increase of ultimate shear stress from 92% (for samples with 25 kPa) to 138% (for samples with 100 kPa), and an average increase of 4% for the residual shear stress. Sensitive analysis was further made to explain reasons causing the differences of the both shear stress induced by the three factors.
文摘This paper presents an experimental study on the behavior of circular concrete columns reinforced by BFRP-PVC tubes under uniaxial loading.A total of six specimens were prepared and tested under uniaxial loading.The main parameters varied in the tests were strengthening ratio and strengthening approach of BFRP.The performance,such as failure modes,ultimate bearing capacity and stress-strain curves,was investigated in details and a formula was proposed to predict the compressive ultimate strength.The results show that this kind of confined columns obviously improves the ultimate bearing capacity,and the ultimate bearing capacity increases with the strengthening layers.The formula proposed is applicable and efficient for prediction of the ultimate bearing capacity as well.