提出了一种基于混沌遗传算法的计算圆度误差的新方法.它利用混沌优化方法的遍历性和随机性,通过混沌扰动操作可克服传统遗传算法中的早熟问题,确保算法的全局收敛性.该方法满足最小条件原理,其计算结果的精确度非常高,理论上可以获得全...提出了一种基于混沌遗传算法的计算圆度误差的新方法.它利用混沌优化方法的遍历性和随机性,通过混沌扰动操作可克服传统遗传算法中的早熟问题,确保算法的全局收敛性.该方法满足最小条件原理,其计算结果的精确度非常高,理论上可以获得全局最优解.实例计算表明,这种算法简单明确,具有精度高、收敛速度快、易于计算机程序实现和推广应用等特点.
Abstract:
A new method for calculating the roundness error based on chaos genetic algorithms is proposed. The system utilizes the ergodicity and randomness of chaos optimal method and by means of chaos stir operation, which can overcame the problem of premature convergence in traditional genetic algorithms and ensured an convergence of the algorithms. The method satisfies the principle of the least condition, the precision of calculating result is very high and can find .the global optimal solution. An actual calculated example showed that this method is simple and clear and it has features of high precision and fast convergent speed as well as using computer easily and popularizing application easily.展开更多
多种群方法已被证明是提高演化算法动态优化性能的重要方法之一。提出了多种群热力学遗传算法(multi-population based thermodynamic genetic algorithm,MPTDGA)。该算法使用一个概率向量在热力学遗传算法迭代过程中不断演化优化与竞...多种群方法已被证明是提高演化算法动态优化性能的重要方法之一。提出了多种群热力学遗传算法(multi-population based thermodynamic genetic algorithm,MPTDGA)。该算法使用一个概率向量在热力学遗传算法迭代过程中不断演化优化与竞争学习,环境变化时分化成三个概率向量,并分别抽样产生原对偶和随机迁入三个子种群,依据这三个种群和记忆种群最好解的情况,选择新的工作概率向量进入新环境进行学习。在动态背包问题上的实验结果表明,MPTDGA比原对偶遗传算法跟踪最优解的能力更强,有很好的多样性,非常适合求解0-1动态优化问题。展开更多
如何将优化方法和CAD建模过程无缝集成在一起是一个急需解决的有重大应用价值的课题。以蜗杆传动优化设计CAD系统的开发为例进行了初步探索。首先介绍了蜗杆传动优化设计的两大关键技术:基于BP网络实现图表的逼近,基于遗传算法求解混合...如何将优化方法和CAD建模过程无缝集成在一起是一个急需解决的有重大应用价值的课题。以蜗杆传动优化设计CAD系统的开发为例进行了初步探索。首先介绍了蜗杆传动优化设计的两大关键技术:基于BP网络实现图表的逼近,基于遗传算法求解混合离散变量优化问题。然后根据国家最新标准,建立蜗杆传动优化设计的规范化数学模型。最后介绍了Visual Studio 2008环境下采用Pro/Toolkit二次开发Pro/ENGINEER Wildfire 4.0软件开发蜗杆传动优化设计CAD系统的过程。展开更多
通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based...通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based range query)域查询处理算法,能够引入搜索区域进行预裁剪以减少查询精炼阶段所需代价偏高的积分计算.实验仿真表明,采用MP_BBRQ算法的TPU-tree概率查询性能极大地优于传统的TPR-tree索引,且更新性能与传统索引大致相当,具有良好的实用价值.展开更多
文摘提出了一种基于混沌遗传算法的计算圆度误差的新方法.它利用混沌优化方法的遍历性和随机性,通过混沌扰动操作可克服传统遗传算法中的早熟问题,确保算法的全局收敛性.该方法满足最小条件原理,其计算结果的精确度非常高,理论上可以获得全局最优解.实例计算表明,这种算法简单明确,具有精度高、收敛速度快、易于计算机程序实现和推广应用等特点.
Abstract:
A new method for calculating the roundness error based on chaos genetic algorithms is proposed. The system utilizes the ergodicity and randomness of chaos optimal method and by means of chaos stir operation, which can overcame the problem of premature convergence in traditional genetic algorithms and ensured an convergence of the algorithms. The method satisfies the principle of the least condition, the precision of calculating result is very high and can find .the global optimal solution. An actual calculated example showed that this method is simple and clear and it has features of high precision and fast convergent speed as well as using computer easily and popularizing application easily.
基金国家自然科学基金 Grant No.61070009国家高技术研究发展计划(863计划) Grant No.2007AA01Z290~~
文摘多种群方法已被证明是提高演化算法动态优化性能的重要方法之一。提出了多种群热力学遗传算法(multi-population based thermodynamic genetic algorithm,MPTDGA)。该算法使用一个概率向量在热力学遗传算法迭代过程中不断演化优化与竞争学习,环境变化时分化成三个概率向量,并分别抽样产生原对偶和随机迁入三个子种群,依据这三个种群和记忆种群最好解的情况,选择新的工作概率向量进入新环境进行学习。在动态背包问题上的实验结果表明,MPTDGA比原对偶遗传算法跟踪最优解的能力更强,有很好的多样性,非常适合求解0-1动态优化问题。
文摘如何将优化方法和CAD建模过程无缝集成在一起是一个急需解决的有重大应用价值的课题。以蜗杆传动优化设计CAD系统的开发为例进行了初步探索。首先介绍了蜗杆传动优化设计的两大关键技术:基于BP网络实现图表的逼近,基于遗传算法求解混合离散变量优化问题。然后根据国家最新标准,建立蜗杆传动优化设计的规范化数学模型。最后介绍了Visual Studio 2008环境下采用Pro/Toolkit二次开发Pro/ENGINEER Wildfire 4.0软件开发蜗杆传动优化设计CAD系统的过程。
文摘通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based range query)域查询处理算法,能够引入搜索区域进行预裁剪以减少查询精炼阶段所需代价偏高的积分计算.实验仿真表明,采用MP_BBRQ算法的TPU-tree概率查询性能极大地优于传统的TPR-tree索引,且更新性能与传统索引大致相当,具有良好的实用价值.