Dynamic tensile impact properties of aramid (Technora) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns ...Dynamic tensile impact properties of aramid (Technora) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.展开更多
The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic ...The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.展开更多
文摘Dynamic tensile impact properties of aramid (Technora) and UHMWPE (DC851) fiber bundles were studied at two high strain rates by means of reflecting type Split Hopkinson Bar, and stress-strain curves of fiber yarns at different strain rates were obtained. Experimental results show that the initial elastic modulus, failure strength and unstable strain of aramid fiber yarns are strain rate insensitive, whereas the initial elastic modulus and unstable strain of UHMWPE fiber yarns are strain rate sensitive. A fiber-bundle statistical constitutive equation was used to describe the tensile behavior of aramid and UHMWPE fiber bundles at high strain rates. The good consistency between the simulated results and experimental data indicates that the modified double Weibull function can represent the tensile strength distribution of aramid and UHMWPE fibers and the method of extracting Weibull parameters from fiber bundles stress-strain data is valid.
基金Sponsored by the 11th Five Years Foundation for Military Advance Research (40103050103)
文摘The mechanical performance of ultra-high molecular weight polyethylene fiber (UHMWPE) and its composites were proposed. Penetrated properties of different thicknesses UHMWPE FRP laminates (URP) impacted by 3.3g cubic high velocity fragments were studied. According to the ballistic experimental results and theoretical analysis, the linear relation between ballistic limit vBL and area density AD was confirmed. The relative parameters of showing experientially residual velocity vr were expressed by the function of AD. In the end, versatile experiential expression between vr and AD was found. Prediction of vr and vBL using obtained expressions under the above stated condition of impacting URP was consistent with the experimentaled results. Consequently, the two experiential relations can be used to predict the residual velocity and ballistic limit of cubic high velocity fragments impacting URP. The residual characteristic of high-velocity steel fragments penetrating UHMWPE FRP laminates can be more exactly forecasted by the two derived experiential formulas.