期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
改进型密集递归残差U-Net的皮肤病变图像分割
1
作者 赵德春 袁杨 +2 位作者 秦璐 韦莉 叶昌荣 《中国生物医学工程学报》 北大核心 2025年第3期291-300,共10页
皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实... 皮肤病变区域的准确分割对计算机辅助诊断具有重要意义。但皮肤病变图像形状不规则、边界模糊并存在噪声干扰,给皮肤病变区域准确分割造成了困难,极大影响了分割的精度。为此,提出了一种基于改进型密集递归残差U-Net模型(IDR2U-Net),实现皮肤病变区域自动分割。首先,将编码层和解码层中的原始卷积块优化为递归残差卷积模块,并且使用密集连接,缓解了梯度消失问题;其次,引入特征自适应模块,通过加强有效特征和抑制无关背景噪声,增强相邻特征之间的融合程度;接着,设计双重注意力机制,其中空间注意力增大全局信息的利用效率,通道注意力用于加强通道特征间的相关性,提升网络对皮肤病变区域分割的准确率,同时采用联合Dice系数与交叉熵的损失函数训练分割网络,解决皮肤镜图像中类别不平衡的问题;最后,采用ISIC 2017皮肤病变数据集中的2000余张图片进行了消融实验和对比实验。实验结果表明,IDR2U-Net模型在Jaccard、Dice系数和准确率上分别达到了78.86%、86.92%和94.61%。改进后的模型不仅提高了精度,还实现了更精细的图像分割,特别是在处理边界模糊图像时,能有效减少欠分割现象。 展开更多
关键词 皮肤病变图像分割 u网络 密集递归残差卷积模块 特征自适应模块 双重注意力机制
在线阅读 下载PDF
对抗样本嵌入注意力U型网络的3D医学图像分割
2
作者 许志雄 李波 +1 位作者 边小勇 胡其仁 《计算机应用》 北大核心 2025年第9期3011-3016,共6页
计算机断层扫描(CT)和核磁共振成像(MRI)图像广泛应用于医学图像深度分割。然而,传统的分割方法受到肿瘤边界模糊及其结构复杂的影响,未能利用对抗样本提升分割模型的区分能力,使获得最好的分割效果面临挑战。针对以上问题,提出一种对... 计算机断层扫描(CT)和核磁共振成像(MRI)图像广泛应用于医学图像深度分割。然而,传统的分割方法受到肿瘤边界模糊及其结构复杂的影响,未能利用对抗样本提升分割模型的区分能力,使获得最好的分割效果面临挑战。针对以上问题,提出一种对抗样本嵌入注意力U型网络学习的3D医学图像分割模型。该模型使用对抗样本嵌入的注意力U型网络以通过样本变换构建对抗样本,并提取医学图像的肿瘤特征信息;引入低维度特征筛选和高维度特征融合模块,以提纯肿瘤可区分特征;使用基于交叉熵、Dice损失和对比损失的组合损失函数训练整个网络,从而得到富于判别性的分割模型。实验结果表明,所提方法在神经鞘膜瘤(NST)和自动心脏诊断挑战(ACDC)数据集上的Dice相似性系数(DSC)分别达到88.14%和91.75%,与非新的U-Net(nnU-Net)方法相比,分别提高了1.26和2.48个百分点。可见,所提方法有效提高了在肿瘤边界模糊时的3D医学图像分割性能。 展开更多
关键词 医学图像分割 深度学习 注意力u网络 对比学习 特征融合
在线阅读 下载PDF
基于迭代压缩U型网络的煤颗粒分割与粒度分析方法 被引量:2
3
作者 程德强 张瑞 +4 位作者 谢同喜 刘敬敬 郑丽娟 寇旗旗 江鹤 《煤炭学报》 北大核心 2025年第2期1362-1375,共14页
煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘... 煤中甲烷气体传播与煤粒的粒度分布特征紧密相连,进而影响煤炭的安全开采和利用。随着数字图像处理技术的不断发展,基于数字图像分割的煤粒形态检测方法已成为获取煤颗粒粒度分布特征的主流方法。在数字图像分割过程中,全局信息和边缘细节起着关键作用,直接影响分割结果的准确性。基于卷积神经网络架构的U型网络过于注重局部信息,忽视了全局信息的重要性,容易导致过分割现象。而基于Transformer的网络利用多头自注意力机制有效地建模了全局信息,但却没有充分利用边缘细节特征,导致煤颗粒漏分割问题。为了解决上述问题,本研究提出了迭代压缩U型网络(Iterative Squeeze UNet,ISUNet)用于煤颗粒粒度分析。ISUNet模型引入了压缩激励空洞空间金字塔池化模块和基于Transformer的多路迭代编码器。压缩激励空洞空间金字塔池化模块通过增强不同尺度特征的通道信息和全局上下文信息,解决了煤粒过分割问题。编码器中的多头自注意力模块将ResNet50的卷积特征作为其中一个输入,通过点乘自注意力机制不断强化重要的边缘细节特征,解决了煤粒漏分割问题。与5种经典图像分割模型和4种目前主流的分割模型相比,ISUNet表现出色。相较于经典的分割模型TransUNet来说,平均交并比提高了6.6%,准确率提高了0.3%,召回率提高了7.0%,相较于目前主流的图像分割大模型Segment Anything来说,平均交并比提高了4.6%,准确率提高了0.2%,召回率提高了4.9%。在煤粒粒度测量方面,准确率达到了97.49%。这些试验结果充分证实了ISUNet在煤粒粒度分析中的有效性和优越性。 展开更多
关键词 煤粒粒度分析 图像分割 基于Transformer的多路迭代编码器 压缩激励空洞空间金字塔池化 u网络
在线阅读 下载PDF
U型卷积网络在乳腺医学图像分割中的研究综述 被引量:2
4
作者 蒲秋梅 殷帅 +1 位作者 李正茂 赵丽娜 《计算机科学与探索》 CSCD 北大核心 2024年第6期1383-1403,共21页
U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网... U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网络设计产生了深远影响。深入探讨了基于U型卷积网络在乳腺医学图像分割中的应用,并对近年来用于乳腺医学图像分割的U型卷积网络进行了分类与归纳。针对U-Net网络结构改进的乳腺医学图像分割技术进行了如下总结。阐述了目前广泛使用的乳腺医学图像数据集及评价指标,陈述了常用的数据增强方法;详细介绍了U-Net模型的网络结构以及用于乳腺医学图像的传统分割方法;对用于乳腺医学图像分割方法的U型网络结构按照残差结构、多尺度特征、膨胀机制、注意力机制、跳跃连接机制、结合Transformer等方面改进进行归纳总结。讨论了当下乳腺医学图像分割所遇到的问题与挑战,对未来的研究走向做出了展望。 展开更多
关键词 医学图像分割 u卷积网络 深度学习 乳腺疾病 图像处理
在线阅读 下载PDF
面向芯片表面缺陷分割的轻量级多尺度网络结构DSDLF-UNet
5
作者 朱永民 顾寄南 +4 位作者 单韵竹 姜宝康 夏子林 高艳 向泓宇 《半导体技术》 北大核心 2025年第11期1174-1182,共9页
针对芯片表面缺陷图像的语义分割,现有模型存在特征提取能力不足、参数量(Params)过大等问题,提出一种面向芯片表面缺陷分割的轻量级多尺度网络结构——DSDLF-UNet。编码器部分设计了双分支深度可分离空洞卷积(DSDConv)模块,该模块融合... 针对芯片表面缺陷图像的语义分割,现有模型存在特征提取能力不足、参数量(Params)过大等问题,提出一种面向芯片表面缺陷分割的轻量级多尺度网络结构——DSDLF-UNet。编码器部分设计了双分支深度可分离空洞卷积(DSDConv)模块,该模块融合深度可分离卷积(DSC)与空洞卷积(DC)的优势,以增强局部细节特征表达和全局感受野的建模能力。主干部分设计了轻量级局部-全局空洞空间金字塔池化(LG-ASPP)模块,以提升多尺度上下文建模能力。整体结构压缩至4层,以降低模型复杂度,在跳跃连接中引入融合通道与空间注意力的全注意力(FA)机制,以提高微小裂纹等细粒度缺陷识别效果。构建了芯片缺陷分割数据集,并设计对比实验和消融实验对所提网络进行验证。实验结果显示,该网络在数据集上平均交并比(mIoU)为84.96%,平均像素准确率(mPA)为87.97%,F1分数(F1-score)为87.72%,性能显著优于其他经典分割网络,能够更精准地实现芯片表面缺陷的分割。 展开更多
关键词 深度学习 u网络(u-net)分割 缺陷分割 轻量级局部-全局空洞空间金字塔池化(LG-ASPP) 全注意力(FA)机制
在线阅读 下载PDF
用于医学图像分割的多层特征交叉融合网络研究
6
作者 刘玉 何立风 +1 位作者 朱纷 张梦颖 《陕西科技大学学报》 北大核心 2025年第3期181-189,共9页
针对U型结构处理医学图像分割任务时存在的编解码器特征差异大、浅层特征丢失、抽象特征学习不足等缺陷,设计了一种多层特征交叉融合网络(MFCF-Net).首先,设计了深度注意力聚合模块,采用深度可分离卷积提取多尺度特征,并通过混合注意力... 针对U型结构处理医学图像分割任务时存在的编解码器特征差异大、浅层特征丢失、抽象特征学习不足等缺陷,设计了一种多层特征交叉融合网络(MFCF-Net).首先,设计了深度注意力聚合模块,采用深度可分离卷积提取多尺度特征,并通过混合注意力机制抑制背景的影响;其次,设计了多尺度快速融合模块,融合通过不同池化策略提取的多尺度特征信息,以丰富深层网络的抽象特征;最后,通过编码支路对深层网络细节信息进行补充.在NIH数据集、ISIC2017数据集和ISIC2018数据集上进行的实验结果表明MFCF-Net的分割效果优于其他先进的网络,尤其在NIH数据集上,DSC达到了0.8837,IoU达到了0.9992. 展开更多
关键词 医学图像分割 u结构 多尺度融合 注意力机制 卷积神经网络
在线阅读 下载PDF
改进的大核卷积U-Net视网膜血管分割方法 被引量:3
7
作者 顾茂华 吴云 《计算机工程与设计》 北大核心 2024年第5期1541-1548,共8页
眼底视网膜血管结构形态复杂、对比度低,且训练样本有限,易产生过拟合现象。针对以上问题,提出一种改进的大核卷积U-Net视网膜血管分割方法(large kernel residual U-Net, LKR-UNet)。减少U-Net下采样次数和每一层的通道数缓解模型过拟... 眼底视网膜血管结构形态复杂、对比度低,且训练样本有限,易产生过拟合现象。针对以上问题,提出一种改进的大核卷积U-Net视网膜血管分割方法(large kernel residual U-Net, LKR-UNet)。减少U-Net下采样次数和每一层的通道数缓解模型过拟合和退化问题;使用大核残差卷积模块(large kernel residual convolution block, LKR-Block)充分提取视网膜血管的特征;通过级联空间通道注意力(cascaded spatial channel attention, CSCA)模块计算空间和通道注意力,提高分割的准确性。提出方法在DRIVE和CHASE_DB1数据集上进行消融实验,在两个数据集上的敏感度分别为84.04%和83.77%,AUC分别为97.82%和98.75%,F1-score分别为82.92%和84.67%。该方法较现有先进算法有一定提升,能有效进行视网膜血管分割。 展开更多
关键词 深度学习 医学图像处理 视网膜血管分割 大核卷积 注意力机制 过拟合 u网络
在线阅读 下载PDF
改进U型卷积网络的细胞核分割方法 被引量:7
8
作者 姜慧明 秦贵和 +1 位作者 邹密 孙铭会 《西安交通大学学报》 EI CAS CSCD 北大核心 2019年第4期100-107,121,共9页
针对经典U型卷积网络在细胞核分割过程中对距离相近目标的边界较难区分、对模糊目标产生误识别等问题,提出一种改进的U型卷积网络(DU-Net)模型。为增强目标边界特征,提出一种梯度融合方法,计算样本梯度信息并将梯度图多尺度融合至U-Net... 针对经典U型卷积网络在细胞核分割过程中对距离相近目标的边界较难区分、对模糊目标产生误识别等问题,提出一种改进的U型卷积网络(DU-Net)模型。为增强目标边界特征,提出一种梯度融合方法,计算样本梯度信息并将梯度图多尺度融合至U-Net编码器。解码器浅层特征通过卷积上采样密集连接至深层特征,增加特征的复用性。针对梯度消失问题,DU-Net模型在每个卷积层后采用批归一化和ReLU激活结构。针对经典U-Net模型对模糊目标的误识别问题,提出一种改进的交叉熵损失函数,该损失函数降低了模糊背景点对模型的干扰,同时提高了模型对小目标的识别能力。在2018年数据科学碗公布的670张图片、约29 500个细胞核的公开数据集上验证了DU-Net模型,结果表明,模型的预测结果与真实标签在Dice系数和Jaccard相似系数两项评价指标上分别达到95.9%和91.0%,性能优于U-Net和SegNet编码器,显著优于经典卷积神经网络模型FCN-8s。 展开更多
关键词 细胞核分割 u卷积网络 梯度融合 密集连接 改进交叉熵损失
在线阅读 下载PDF
基于改进U型网络的眼底图像血管分割 被引量:10
9
作者 高宏杰 邱天爽 +2 位作者 丑远婷 周明 张晓博 《中国生物医学工程学报》 CAS CSCD 北大核心 2019年第1期1-8,共8页
眼底图像血管分割问题是眼科及其他相关疾病计算机辅助诊断的基础。通过分割和分析眼底图像中的血管结构,可以对糖尿病视网膜病变、高血压和动脉硬化等疾病进行早期诊断和监测。针对目前已有血管分割算法存在准确率不高和灵敏度较低的问... 眼底图像血管分割问题是眼科及其他相关疾病计算机辅助诊断的基础。通过分割和分析眼底图像中的血管结构,可以对糖尿病视网膜病变、高血压和动脉硬化等疾病进行早期诊断和监测。针对目前已有血管分割算法存在准确率不高和灵敏度较低的问题,基于深度学习基本理论,提出一种改进U型网络的眼底图像血管分割算法。首先,通过减少传统U型网络下采样和上采样操作次数,解决眼底图像数据较少的问题;其次,通过将传统卷积层串行连接方式改为残差映射相叠加的方式,提高特征的使用效率;最后,在卷积层之间加入批量归一化和PReLU激活函数对网络进行优化,使网络性能得到进一步的提升。在DRIVE和CHASE_DB1这两个公开的眼底数据库上进行实验,每个数据库随机抽取160 000个图像块送入改进的网络中进行训练和测试,可以得到该算法在两个数据库上的灵敏度、准确率和AUC(ROC曲线下的面积)值,相比已有算法的最好结果平均分别提高2.47%、0.21%和0.35%。所提出的算法可改善眼底图像细小血管分割准确率不高及灵敏度较低的问题,能够较好地分割出低对比度的微细血管。 展开更多
关键词 眼底图像 血管分割 u网络 网络优化
在线阅读 下载PDF
基于Transformer的U型医学图像分割网络综述 被引量:14
10
作者 傅励瑶 尹梦晓 杨锋 《计算机应用》 CSCD 北大核心 2023年第5期1584-1595,共12页
目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥... 目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥补CNN的不足,结合Transformer和U型结构的分割网络成为研究热点之一。在详细介绍U-Net和Transformer之后,按医学图像分割模型中Transformer模块所处的位置,包括仅在编码器或解码器、同时在编码器和解码器、作为过渡连接和其他位置进行分类,讨论各模型的基本内容、设计理念以及可改进的地方,并分析了Transformer处于不同位置的优缺点。根据分析结果可知,决定Transformer所在位置的最大因素是目标分割任务的特点,而且Transformer结合U-Net的分割模型能更好地利用CNN和Transformer各自的优势,提高模型的分割性能,具有较大的发展前景和研究价值。 展开更多
关键词 深度学习 卷积神经网络 医学图像分割 u网络 TRANSFORMER
在线阅读 下载PDF
结合序列学习和U型网络的海马体分割方法 被引量:2
11
作者 曹平 盛邱煬 +3 位作者 潘清 宁钢民 汪振杰 方路平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第8期1382-1390,共9页
针对普通二维语义分割网络难以精确分割海马体磁共振图像的问题,提出结合序列学习和U型网络的海马体分割方法.该方法中,U型网络由编码器和解码器2部分组成,编码器提取并编码图像特征,解码器组合特征并输出分割掩码;序列学习使用双向卷... 针对普通二维语义分割网络难以精确分割海马体磁共振图像的问题,提出结合序列学习和U型网络的海马体分割方法.该方法中,U型网络由编码器和解码器2部分组成,编码器提取并编码图像特征,解码器组合特征并输出分割掩码;序列学习使用双向卷积长短期记忆网络引入相邻切片间的依赖信息以提升分割精度.在ADNI数据集上的实验结果表明,文中方法的分割性能较通常的U型网络更优,且网络的可视化结果表现出可解释性,与专家知识相符合. 展开更多
关键词 海马体分割 语义分割 序列学习 u网络 双向卷积长短期记忆网络
在线阅读 下载PDF
空洞残差U型网络用于视网膜血管分割 被引量:14
12
作者 胡扬涛 裴洋 +2 位作者 林川 李世成 易玉根 《计算机工程与应用》 CSCD 北大核心 2021年第7期185-191,共7页
青光眼是一种不可逆转的致盲性眼科疾病,应当早发现和早治疗。但人工诊断是费时费力的过程,而且受基层医疗资源的限制,人工诊断很容易产生漏诊和误诊的现象。因此,利用深度学习技术辅助诊断眼疾病具有重大意义。如何更为准确且有效地分... 青光眼是一种不可逆转的致盲性眼科疾病,应当早发现和早治疗。但人工诊断是费时费力的过程,而且受基层医疗资源的限制,人工诊断很容易产生漏诊和误诊的现象。因此,利用深度学习技术辅助诊断眼疾病具有重大意义。如何更为准确且有效地分割视网膜血管成为眼疾病辅助诊断的研究热点问题。于是,基于U型网络(U-Net)提出一种新的网络结构称为空洞残差U型网络(Atrous Residual U-Net,AR-Unet)。在AR-Unet中,为了避免U-Net中的梯度消失以及图像结构信息丢失等问题,将残差网络(ResNet)引入到U-Net中。为了扩大感受野和提高物体间的相关性,再将空洞卷积(Atrous Convolution)整合到U-Net中,从而使得血管分割更加精确。在三个公开的彩色眼底图像数据集DRIVE、STARE和CHASE上进行大量实验,结果表明在不同评价指标下,AR-Unet方法的性能均要优于大多数对比方法。 展开更多
关键词 视网膜血管分割 空洞残差u网络 空洞卷积 u网络 残差网络
在线阅读 下载PDF
结合超像素和U型全卷积网络的胰腺分割方法 被引量:3
13
作者 曹正文 乔念祖 +1 位作者 卜起荣 冯筠 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第10期1777-1785,共9页
为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U... 为了提高现有胰腺图像分割方法性能,提出一种超像素和U型全卷积网络(U-NET)结合的胰腺图像分割方法.首先,提出一种胰腺CT图像的超像素分割方法;然后,依据分割结果对图像进行映射降维得到腹部视觉概要图像,再将其与超像素位置信息作为U型全卷积网络的输入;最后,得到分割好的胰腺器官.在NIH胰腺公开数据集上的实验结果表明,文中方法将戴斯相似系数(DSC)提高到87.9%,高于目前已有的胰腺图像分割方法.并且其运算速度高于U-NET. 展开更多
关键词 胰腺图像分割 超像素 u全卷积网络 戴斯相似系数
在线阅读 下载PDF
基于高斯偏置自注意力和交叉注意力的医学图像分割模型 被引量:1
14
作者 罗会兰 郭宇辰 《计算机科学》 CSCD 北大核心 2024年第S02期456-464,共9页
为解决医学图像分割中目标之间存在特征差异、不同切片图像中存在同一解剖结构的相似表征和器官与背景的区分度低造成冗余信息过多的问题,提出了一种基于高斯偏置自注意力和交叉注意力的网络模型(Gaussian bias and Contextual cross At... 为解决医学图像分割中目标之间存在特征差异、不同切片图像中存在同一解剖结构的相似表征和器官与背景的区分度低造成冗余信息过多的问题,提出了一种基于高斯偏置自注意力和交叉注意力的网络模型(Gaussian bias and Contextual cross Attention U-Net,GCA-UNet)。采用残差模块建立空间先验假设,通过高斯偏置自注意力&外注意力模块的高斯偏置自注意力来学习空间先验假设和强化相邻区域的特征表示,并利用外注意力机制学习同一样本下不同切片之间的相关性;上下文交叉注意力门控利用多尺度特征提取来强化结构和边界信息,同时对上下文语义信息进行重新校准并筛除冗余信息。实验结果表明,在Synapse腹腔CT多器官分割数据集和ACDC心脏MRI数据集上,GCA-UNet网络的分割精度指标Mean Dice分别达到了81.37%和91.69%,在Synapse数据集上边界分割精度指标Mean hd95达到16.01。相比其他先进医学影像分割模型,GCA-Unet分割精度更高,具有更清晰的组织边界。 展开更多
关键词 医学图像分割 u网络 高斯偏置 外注意力机制 上下文交叉注意力门控
在线阅读 下载PDF
基于改进的U-Net肺结节分割方法研究 被引量:8
15
作者 苗语 丰振航 +2 位作者 杨华民 蒋振刚 师为礼 《计算机应用与软件》 北大核心 2021年第12期213-219,共7页
由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复... 由于肺部CT图像的特征信息复杂程度高,经典U型卷积网络对肺结节分割存在准确率较低和误分割等问题。针对这一问题,提出一种改进的U型卷积网络模型。该模型将U-Net网络和DenseNet网络融合,将解码器浅层特征连接至深层特征来增强特征的复用性。通过U-Net网络与卷积条件随机场(ConvCRF)的端到端结合训练来增强边缘特征,解决了边界模糊的问题。提出一种改进的focal loss损失函数,该函数提高了结节所占的权重,解决了正负样本不平衡的问题。在LUNA16数据集中作对比实验验证了模型的性能,分割精准度达到0.9374,敏感度为0.941,该结果证明了改进模型在肺结节分割中更优。 展开更多
关键词 肺结节分割 u卷积网络 密集连接 损失函数 卷积条件随机场
在线阅读 下载PDF
基于深度残差U型网络的果园环境识别 被引量:1
16
作者 商高高 朱鹏 刘刚 《计算机应用与软件》 北大核心 2023年第5期235-242,共8页
果园环境复杂多变,传统机器视觉识别算法易受到光照阴影等因素影响,识别目标能力有限且精度较低。深度残差U型网络可对果园环境中的树木、可行驶道路、杂物等进行语义分割。网络基本结构采用U型网络,在编码层和瓶颈层中加入残差学习,利... 果园环境复杂多变,传统机器视觉识别算法易受到光照阴影等因素影响,识别目标能力有限且精度较低。深度残差U型网络可对果园环境中的树木、可行驶道路、杂物等进行语义分割。网络基本结构采用U型网络,在编码层和瓶颈层中加入残差学习,利用残差模块提升网络深度,增强不同层次的语义信息融合,提高特征表达能力和识别准确率;解码层中采用上采样进行特征映射,方便快捷,并通过跳跃连接融合编码层的语义信息,减少网络参数,加速训练。通过PyTorch深度学习框架搭建网络,训练数据集,并将该网络与全卷积神经网络和U型网络进行对比实验,结果表明深度残差U型网络识别准确率最高,平均交并比为83.3%,适用于果园环境识别。 展开更多
关键词 环境识别 机器视觉 深度残差u网络 语义分割 信息融合
在线阅读 下载PDF
基于多尺度引导滤波的宫颈细胞核图像分割 被引量:1
17
作者 令狐鑫瑶 陈燕 +4 位作者 张鹏程 刘祎 桂志国 赵伟 董展豪 《计算机应用》 北大核心 2025年第4期1333-1339,共7页
针对宫颈细胞核图像分割中上下文信息联系匮乏和边缘分割不准确且精度低等问题,提出一种基于Unet改进的结合密集块的U型卷积多尺度引导滤波模块的宫颈细胞核分割网络DGU-Net(Dense-Guided-UNet),可以更完整且精确地分割宫颈细胞核图像... 针对宫颈细胞核图像分割中上下文信息联系匮乏和边缘分割不准确且精度低等问题,提出一种基于Unet改进的结合密集块的U型卷积多尺度引导滤波模块的宫颈细胞核分割网络DGU-Net(Dense-Guided-UNet),可以更完整且精确地分割宫颈细胞核图像。首先,以编码器、解码器结构的U-net模型作为网络骨干提取图像特征;其次,引入密集块模块连接不同层之间的特征,实现上下文信息的传递,从而增强模型的特征提取能力;同时,在每次下采样后和上采样前引入多尺度引导滤波模块,从而引入灰度引导图像中明显的边缘细节信息,增强图像细节和边缘信息;最后,在每个解码器路径中都增加一个侧输出层,融合并平均所有输出的特征信息,从而融合不同尺度不同层次的特征信息,提升结果的准确性和完整性。在Herlev数据集上实验,并把所提网络与U-net、PGU-net+(Progressive Growing of U-net+)和LFANet(Lightweight Feature Attention Network)这3种深度学习模型对比。结果表明,与PGUnet+相比,DGU-Net的准确率提升了70.06%;与LFANet相比,DGU-Net的交并比(IoU)提升了6.75%。可见,DGU-Net在边缘细节信息处理上更准确,并在分割指标上普遍优于对比模型。 展开更多
关键词 多尺度引导滤波 密集块 宫颈细胞核 细胞核图像分割 u网络
在线阅读 下载PDF
一种基于结构感知的肝血管分割模型
18
作者 贾熹滨 孙馨蕊 +3 位作者 杨正汉 杨大为 王珞 HONG Min 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期61-69,共9页
为了在缺乏大量肝血管标注信息的情况下增强肝血管结构分割,提出了局部-长距离-相邻信息融合模块,并将其嵌入U-Net的编码阶段,得到一种基于结构感知的肝血管分割网络。该模块有3个分支:提取特征图局部信息的残差卷积模块,利用自注意力... 为了在缺乏大量肝血管标注信息的情况下增强肝血管结构分割,提出了局部-长距离-相邻信息融合模块,并将其嵌入U-Net的编码阶段,得到一种基于结构感知的肝血管分割网络。该模块有3个分支:提取特征图局部信息的残差卷积模块,利用自注意力机制提取特征图的全局信息的长距离提取模块,以及利用相邻切片补充上下文信息的相邻信息提取模块。通过将以上3个分支模块的输出特征图进行融合,可以有效提升网络的血管结构感知能力,缓解2D网络无法表征血管立体走向与3D网络训练数据不足的问题。分别在MICCAI十项全能数据集中的肝血管与肿瘤数据集和三甲医院收集标注的自采肝血管数据集上进行了广泛的对比实验。结果表明,与多种主流的分割算法相比,该算法取得了最优的血管分割性能。所提出的方法在MICCAI数据集上Dice值达到64.04%,在自采肝血管数据集上Dice值达到了72.07%。 展开更多
关键词 肝血管分割 语义分割 u网络 深度学习 切片上下文融合 结构感知
在线阅读 下载PDF
基于注意力增强U-Net的脑卒中病灶分割 被引量:3
19
作者 王一诺 张俊然 +1 位作者 刘彦 李家琛 《计算机工程与设计》 北大核心 2022年第8期2268-2274,共7页
基于卷积神经网络的分割模型可以自主学习特征,精确快速分割病灶,为缺血性卒中临床救治提供客观高效的决策支持。针对现有研究由于复杂的算法流程和模型结构导致分割时间大量增加,以及U-Net缺乏对特征通道和空间信息的关注,不能很好地... 基于卷积神经网络的分割模型可以自主学习特征,精确快速分割病灶,为缺血性卒中临床救治提供客观高效的决策支持。针对现有研究由于复杂的算法流程和模型结构导致分割时间大量增加,以及U-Net缺乏对特征通道和空间信息的关注,不能很好地适应形态位置各异的病灶等问题,提出基于通道和空间注意力增强模块CSA的U-Net,利用一维卷积和膨胀卷积,分别获得高效的通道间依赖关系和感受野更广的空间注意力。在ISLES 2018数据集上进行验证,实验结果表明,CSA提升了U-Net的分割效果,分割性能优于其它几种U-Net的变体。 展开更多
关键词 缺血性脑卒中病灶分割 医学图像分割 语义分割 u网络 注意力机制
在线阅读 下载PDF
融合注意力与上下文信息的皮肤癌图像分割模型 被引量:1
20
作者 支慧芳 韩建新 吴永飞 《计算机工程与设计》 北大核心 2024年第9期2859-2865,共7页
为提高黑色素瘤分割性能,提出一种结合注意力机制和上下文信息的U-Net网络。以Resnet-34网络作为编码器,在跳跃连接中加入坐标注意力,通过捕捉精准的位置信息定位更准确的目标区域;设计上下文信息模块强化对前景特征的学习能力;加入高... 为提高黑色素瘤分割性能,提出一种结合注意力机制和上下文信息的U-Net网络。以Resnet-34网络作为编码器,在跳跃连接中加入坐标注意力,通过捕捉精准的位置信息定位更准确的目标区域;设计上下文信息模块强化对前景特征的学习能力;加入高效通道注意力模块,重新校准权重并获得更高质量的分割图。在公共数据集ISIC 2017上验证改进模型,其结果表明,该模型召回率、F1分数达到85.29%、87.03%,与现有方法对比,在准确率、交并比、召回率、F1分数产生竞争性结果。 展开更多
关键词 病变分割 多尺度融合 注意力机制 上下文信息 卷积神经网络 u-net网络 坐标注意力 高效通道注意力
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部