期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于卷积神经网络的线结构光高精度三维测量方法
1
作者 叶涛 何威燃 +2 位作者 刘国鹏 欧阳煜 王斌 《仪器仪表学报》 北大核心 2025年第2期183-195,共13页
线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精... 线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精度下降,进而影响整体三维测量的精度和鲁棒性。针对上述问题,提出了一种基于卷积神经网络的鲁棒三维测量方法。首先,设计了一种创新性的残差U型块特征金字塔网络(RSU-FPN),旨在实现背景噪声的干扰抑制和结构光条纹区域中心的高精度鲁棒提取。其次,构建了一种新型的线结构光视觉传感器,并提出了一种分离式测量模型,成功将摄像机标定与光平面标定解耦,极大地提高了系统的灵活性与扩展性。通过这种解耦的标定方式,避免了传统标定方法中存在的耦合问题,使得整个测量系统更加高效且易于调整。实验结果表明,所提出的基于卷积神经网络的鲁棒三维测量方法,在复杂背景下能够实现结构光条纹中心的高精度提取,利用提取出的光条纹中心进行标定,其均方根误差分别为x方向0.005 mm、y方向0.009 mm以及z方向0.097 mm。并且,该方法在不同表面类型(如漫反射表面和光滑反射表面)上均能实现高精度的三维重建,验证了其在实际应用中的优越性和强大的鲁棒性。 展开更多
关键词 线结构光 三维测量 卷积神经网络 残差u块特征金字塔网络 背景噪声抑制
在线阅读 下载PDF
基于U型卷积神经网络的微地震信号降噪方法 被引量:3
2
作者 郑路佳 管闯 +2 位作者 李含阳 李航 董宏丽 《东北石油大学学报》 CAS 北大核心 2023年第5期111-124,I0008,共15页
降噪后的微地震信号存在波形失真问题,基于U型卷积神经网络,引入膨胀系数的空洞卷积,建立U型卷积降噪模型,利用包络熵作为损失函数,对实际微地震信号进行无监督处理,并将U型卷积神经网络的微地震降噪方法(U-NetNA方法)与小波阈值法、时... 降噪后的微地震信号存在波形失真问题,基于U型卷积神经网络,引入膨胀系数的空洞卷积,建立U型卷积降噪模型,利用包络熵作为损失函数,对实际微地震信号进行无监督处理,并将U型卷积神经网络的微地震降噪方法(U-NetNA方法)与小波阈值法、时频峰值法、卷积神经网络降噪方法的降噪效果进行对比。结果表明:U-NetNA方法可以应用于合成和实际微地震数据降噪,具有可行性和有效性。与其他方法相比,U-NetNA方法得到更丰富的有效信号特征,能够有效压制噪声,提高微地震信号信噪比。该结果对微地震事件识别、反演定位和裂缝解释等具有参考意义。 展开更多
关键词 u卷积神经网络 噪声压制 空洞卷积 包络熵 微地震信号 u-netNA方法
在线阅读 下载PDF
用于医学图像分割的多层特征交叉融合网络研究
3
作者 刘玉 何立风 +1 位作者 朱纷 张梦颖 《陕西科技大学学报》 北大核心 2025年第3期181-189,共9页
针对U型结构处理医学图像分割任务时存在的编解码器特征差异大、浅层特征丢失、抽象特征学习不足等缺陷,设计了一种多层特征交叉融合网络(MFCF-Net).首先,设计了深度注意力聚合模块,采用深度可分离卷积提取多尺度特征,并通过混合注意力... 针对U型结构处理医学图像分割任务时存在的编解码器特征差异大、浅层特征丢失、抽象特征学习不足等缺陷,设计了一种多层特征交叉融合网络(MFCF-Net).首先,设计了深度注意力聚合模块,采用深度可分离卷积提取多尺度特征,并通过混合注意力机制抑制背景的影响;其次,设计了多尺度快速融合模块,融合通过不同池化策略提取的多尺度特征信息,以丰富深层网络的抽象特征;最后,通过编码支路对深层网络细节信息进行补充.在NIH数据集、ISIC2017数据集和ISIC2018数据集上进行的实验结果表明MFCF-Net的分割效果优于其他先进的网络,尤其在NIH数据集上,DSC达到了0.8837,IoU达到了0.9992. 展开更多
关键词 医学图像分割 u结构 多尺度融合 注意力机制 卷积神经网络
在线阅读 下载PDF
基于Transformer的U型医学图像分割网络综述 被引量:12
4
作者 傅励瑶 尹梦晓 杨锋 《计算机应用》 CSCD 北大核心 2023年第5期1584-1595,共12页
目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥... 目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥补CNN的不足,结合Transformer和U型结构的分割网络成为研究热点之一。在详细介绍U-Net和Transformer之后,按医学图像分割模型中Transformer模块所处的位置,包括仅在编码器或解码器、同时在编码器和解码器、作为过渡连接和其他位置进行分类,讨论各模型的基本内容、设计理念以及可改进的地方,并分析了Transformer处于不同位置的优缺点。根据分析结果可知,决定Transformer所在位置的最大因素是目标分割任务的特点,而且Transformer结合U-Net的分割模型能更好地利用CNN和Transformer各自的优势,提高模型的分割性能,具有较大的发展前景和研究价值。 展开更多
关键词 深度学习 卷积神经网络 医学图像分割 u网络 TRANSFORMER
在线阅读 下载PDF
融合背景估计与U-Net的文档图像二值化算法 被引量:10
5
作者 熊炜 王鑫睿 +2 位作者 王娟 刘敏 曾春艳 《计算机应用研究》 CSCD 北大核心 2020年第3期896-900,共5页
针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,... 针对低质量文档图像存在页面污渍、墨迹浸润、背景纹理等多种退化因素,提出一种融合背景估计与U型卷积神经网络(U-Net)的文档图像二值化算法。该算法首先进行图像对比度增强,然后通过形态学闭操作来估计文档图像背景,并利用全卷积网络,即U-Net对背景减除图像进行前景背景分割,最后采用全局最优阈值处理方法获得最终二值图像。实验结果表明,在2016和2017年国际文档图像二值化竞赛(DIBCO)中该算法的F值(F-measure,FM)、伪F值(pseudo F-measure,p-FM)、峰值信噪比(peak signal to noise ratio,PSNR)、距离倒数失真度量(distance reciprocal distortion,DRD)比性能次优的经典算法最高有5.58%、2.47%、0.86 dB、1.19%的性能提升。 展开更多
关键词 文档图像二值化 对比度增强 形态学闭操作 u卷积神经网络 全局最优阈值处理
在线阅读 下载PDF
基于MSCNN-LSTM的注意力机制U型管道缺陷识别模型 被引量:4
6
作者 朱雪峰 冯早 +1 位作者 马军 范玉刚 《振动与冲击》 EI CSCD 北大核心 2023年第22期293-302,共10页
对于承担缓震功能的特异U型管道,其结构复杂使管内和管壁缺陷具有时延性和多源多征兆等特点。针对U型管道缺陷难以有效识别的问题,提出一种基于多尺度卷积神经网络–长短期记忆(multi-scale convolution neural network-long short-term... 对于承担缓震功能的特异U型管道,其结构复杂使管内和管壁缺陷具有时延性和多源多征兆等特点。针对U型管道缺陷难以有效识别的问题,提出一种基于多尺度卷积神经网络–长短期记忆(multi-scale convolution neural network-long short-term memory,MSCNN-LSTM)的注意力机制U型管道缺陷识别方法。采用主动声学检测方法获取管道声学响应信号,将原始声学信号作为模型输入,训练多尺度卷积神经网络提取重要细粒度局部特征。然后,多尺度局部特征融合为一个特征向量输入至LSTM网络中抽取潜藏在时序规律的粗粒度上下文特征。下一步引入注意力机制,对提取的特征赋予不同的权重,使模型更关注于最具类别区分度的特征,滤除冗余特征,提高模型缺陷识别能力。最后,在输出端通过Softmax分类器实现U型管道缺陷识别。试验结果表明,与其他常用的分类方法相比,该方法拥有更快的收敛速度,可实现98.44%的缺陷识别准确率。此外,采用Grad-CAM类激活可视化方法对所提模型的特征学习和缺陷分类机理实现了过程分析和展示。 展开更多
关键词 u管道 缺陷识别 多尺度卷积神经网络(MSCNN) 长短期记忆(LSTM) 注意力机制
在线阅读 下载PDF
基于U-Net和SVM的圆形工业品形变缺陷检测方法 被引量:3
7
作者 王佳豪 周哲海 兰永亮 《激光杂志》 北大核心 2020年第11期25-31,共7页
针对圆形工业品形变缺陷检测人工检测受主观经验影响大,抽样率低、实时性差等问题,提出了一种基于U型卷积神经网络(U-Net)结合支持向量机(SVM)的工业缺陷检测的快速准确方法。该方法先通过U型卷积神经网络对图像的目标检测区域进行图像... 针对圆形工业品形变缺陷检测人工检测受主观经验影响大,抽样率低、实时性差等问题,提出了一种基于U型卷积神经网络(U-Net)结合支持向量机(SVM)的工业缺陷检测的快速准确方法。该方法先通过U型卷积神经网络对图像的目标检测区域进行图像分割,得到目标区域的二值图像;再采用Sobel边缘检测算法获取边缘点,采用最小二乘法确定圆心、半径并计算定位误差;最后,将半径和定位误差作为特征参量进行SVM二分类,从而判别圆形工业品是否存在形变缺陷。以常见的易拉罐拉环盖圆形锚点缺陷为例,验证了本方法的有效性。实验结果表明,在锚点变形严重和存在光照不均匀的情况下,该方法仍可实现拉环盖锚点形变缺陷准确快速的检测,通过对小样本图像数据进行检测评估,检测准确率达到96.88%,满足工业缺陷检测的要求。 展开更多
关键词 u卷积神经网络 边缘提取 最小二乘圆检测 支持向量机 缺陷检测
在线阅读 下载PDF
基于U-Net的珊瑚礁遥感影像自动分类 被引量:2
8
作者 王桓 吴迪 +1 位作者 左秀玲 王浩 《海洋测绘》 CSCD 北大核心 2023年第1期63-67,共5页
珊瑚礁遥感影像分类是珊瑚礁遥感监测的关键性基础技术,对珊瑚礁生态保护与制图应用起着重要的支撑作用。提出一种新的基于U-Net模型的珊瑚礁遥感影像自动分类方法,该方法使用小样本珊瑚礁影像训练即可得到分类精度较高的模型,克服了一... 珊瑚礁遥感影像分类是珊瑚礁遥感监测的关键性基础技术,对珊瑚礁生态保护与制图应用起着重要的支撑作用。提出一种新的基于U-Net模型的珊瑚礁遥感影像自动分类方法,该方法使用小样本珊瑚礁影像训练即可得到分类精度较高的模型,克服了一般深度学习模型需要海量样本数据训练的缺陷。基于LandsatTM影像,对南海珊瑚礁进行遥感分类,其准确度潟湖坡为78%,向海坡为85%,珊瑚礁、海洋、陆地均大于95%,所有类别的边界轮廓指数大于92%。因此,这种自动分类方法比传统的珊瑚礁遥感影像分类方法精度更高,分类速度更快。 展开更多
关键词 珊瑚礁遥感 影像自动分类 u卷积神经网络(u-net) 深度学习 Landsat-8卫星
在线阅读 下载PDF
融合注意力与上下文信息的皮肤癌图像分割模型 被引量:1
9
作者 支慧芳 韩建新 吴永飞 《计算机工程与设计》 北大核心 2024年第9期2859-2865,共7页
为提高黑色素瘤分割性能,提出一种结合注意力机制和上下文信息的U-Net网络。以Resnet-34网络作为编码器,在跳跃连接中加入坐标注意力,通过捕捉精准的位置信息定位更准确的目标区域;设计上下文信息模块强化对前景特征的学习能力;加入高... 为提高黑色素瘤分割性能,提出一种结合注意力机制和上下文信息的U-Net网络。以Resnet-34网络作为编码器,在跳跃连接中加入坐标注意力,通过捕捉精准的位置信息定位更准确的目标区域;设计上下文信息模块强化对前景特征的学习能力;加入高效通道注意力模块,重新校准权重并获得更高质量的分割图。在公共数据集ISIC 2017上验证改进模型,其结果表明,该模型召回率、F1分数达到85.29%、87.03%,与现有方法对比,在准确率、交并比、召回率、F1分数产生竞争性结果。 展开更多
关键词 病变分割 多尺度融合 注意力机制 上下文信息 卷积神经网络 u-net网络 坐标注意力 高效通道注意力
在线阅读 下载PDF
融合残差Inception与双向ConvGRU的皮肤病变智能分割
10
作者 顾敏杰 李雪 陈思光 《数据采集与处理》 CSCD 北大核心 2023年第4期937-946,共10页
由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元(Convolutional gated recurrent unit,ConvGRU)的皮肤病变智能分... 由于皮肤病病灶的形状、颜色以及纹理差异极大,且边界不明确,使得传统深度学习方法很难对其进行准确分割。因此本文提出了一种融合残差Inception与双向卷积门控循环单元(Convolutional gated recurrent unit,ConvGRU)的皮肤病变智能分割模型。首先设计了一种云边协同的皮肤病变智能分割服务网络模型,通过该网络模型,用户可以获得快速、准确的分割服务;其次,构建了一种新的皮肤病变智能分割模型,通过融合残差Inception与双向ConvGRU,该模型能融合不同尺度特征,提高模型特征提取能力,并能充分利用底层特征与语义特征之间的关系,捕获更丰富的全局上下文信息,取得更好的分割性能;最后,在ISIC 2018数据集上的实验结果表明,所提出的智能分割模型与近期提出的几种U-Net扩展模型相比,取得了更高的准确率与Jaccard系数。 展开更多
关键词 皮肤病 图像分割 残差网络 u卷积神经网络 卷积门控循环单元
在线阅读 下载PDF
深度学习在脊柱图像分割中的应用综述 被引量:3
11
作者 姜百浩 刘静 +1 位作者 仇大伟 姜良 《计算机工程》 CAS CSCD 北大核心 2024年第3期1-15,共15页
深度学习算法在脊柱图像分割中具有学习和自适应能力强、对图像有非线性映射能力等优点,相较于传统分割方法,能更好地提取脊柱图像中的关键信息,并且抑制不相关信息,辅助医生准确定位病灶区域,实现精准、高效分割。从深度学习算法、脊... 深度学习算法在脊柱图像分割中具有学习和自适应能力强、对图像有非线性映射能力等优点,相较于传统分割方法,能更好地提取脊柱图像中的关键信息,并且抑制不相关信息,辅助医生准确定位病灶区域,实现精准、高效分割。从深度学习算法、脊柱疾病类型、图像类型、实验分割结果、性能评估指标等方面,对深度学习在脊柱图像分割中的应用现状进行归纳、总结并加以分析。介绍深度学习模型和脊柱图像分割的背景,从而引出深度学习在脊柱图像分割中的应用;介绍常见的几种脊柱疾病类型,阐述其在图像分割中的难点,并介绍脊柱图像分割中常用的公开数据集、图像分割的方法流程以及图像分割评价指标等要素;结合具体实验总结分析基于卷积神经网络模型、U型网络模型及其改进的模型在椎骨、椎间盘以及脊柱肿瘤图像分割中的应用进展;结合以往的实验结果和当前深度学习模型的研究进展,总结目前临床研究的局限性以及分割效果不足的原因,针对所存在的问题提出相应的解决方法,并对未来的研究和发展进行展望。 展开更多
关键词 深度学习 卷积神经网络 u网络 脊柱疾病 图像分割
在线阅读 下载PDF
复杂背景下的路面裂缝检测的关键技术 被引量:6
12
作者 杨泽 孙静宇 《计算机工程与设计》 北大核心 2023年第5期1519-1527,共9页
针对目前路面裂缝检测方法在复杂环境下识别率较低、鲁棒性较差的问题,提出一种改进网络CBAM-Res-GhostNet对路面裂缝实现有效分类。在卷积神经网络中引入Ghost模块和改进残差模块,加入卷积注意力,避免梯度消失和过拟合现象,实现对路面... 针对目前路面裂缝检测方法在复杂环境下识别率较低、鲁棒性较差的问题,提出一种改进网络CBAM-Res-GhostNet对路面裂缝实现有效分类。在卷积神经网络中引入Ghost模块和改进残差模块,加入卷积注意力,避免梯度消失和过拟合现象,实现对路面裂缝的准确判断;在此基础上,提出一种改进网络Self-Attention-UNet对路面裂缝区域进行高精度分割,引入自注意力机制增强模型裂缝特征提取能力,提高分割精度。在EdmCrack600数据集上,所提分类算法准确度达到99.13%,分割算法的精准率和F1值分别为86.85%和86.6%,相较原始方法具有更好的分类分割效果。 展开更多
关键词 计算机视觉 裂缝检测 深度学习 图像处理 u卷积神经网络 注意力 残差模块
在线阅读 下载PDF
基于深度学习和形态学的海底沙波谷线提取
13
作者 刘晓亚 韩留生 +3 位作者 李正元 范俊甫 张大富 孙广伟 《海洋测绘》 CSCD 北大核心 2023年第2期65-68,73,共5页
为了提高基于侧扫声纳图像提取海底沙波谷线这种类别不均衡线状地物的精度,提出了一种深度学习与数学形态学相结合的方法。该方法采用Dice损失函数和添加批标准化(batch normalization, BN),对U型卷积神经网络模型(U-Net)进行改进;结合... 为了提高基于侧扫声纳图像提取海底沙波谷线这种类别不均衡线状地物的精度,提出了一种深度学习与数学形态学相结合的方法。该方法采用Dice损失函数和添加批标准化(batch normalization, BN),对U型卷积神经网络模型(U-Net)进行改进;结合数学形态学中的闭运算和骨架法,对沙波谷线轮廓进行修复并提取线性特征;进一步将改进的U-Net模型与支持向量机(support vector machine, SVM)、随机森林(random forest, RF)、面向对象分类以及U-Net模型进行精度对比验证。结果表明:改进的U-Net模型能够解决类别不均衡的问题,实现沙波谷线的高精度提取,该方法对海底沙波的研究具有重要的科学与工程应用价值。 展开更多
关键词 海底地形测量 侧扫声纳 提取海底沙波谷线 u卷积神经网络 数学形态学 Dice损失函数
在线阅读 下载PDF
融合分层特征与残差蒸馏连接的图像超分辨率重建 被引量:1
14
作者 程德强 朱星光 +3 位作者 寇旗旗 陈亮亮 王晓艺 赵佳敏 《智能系统学报》 CSCD 北大核心 2023年第6期1173-1184,共12页
针对目前诸多图像超分辨率重建算法通过采用单一通道网络结构无法充分利用特征信息的问题,提出了一种可以高效利用特征信息的融合分层特征与残差蒸馏连接的超分辨率重建算法。该方法首先设计了一种将分层特征融合与残差连接相结合的连... 针对目前诸多图像超分辨率重建算法通过采用单一通道网络结构无法充分利用特征信息的问题,提出了一种可以高效利用特征信息的融合分层特征与残差蒸馏连接的超分辨率重建算法。该方法首先设计了一种将分层特征融合与残差连接相结合的连接方式,对图像深层特征与浅层特征进行充分融合,提升了网络对于特征信息的利用率;其次设计出一种残差蒸馏注意力模块,使网络更高效地关注图像关键特征,从而可以更好地恢复出重建图像的细节特征。实验结果表明,所提出的算法模型不仅在4种测试集上呈现出更优秀的客观评价指标,而且在主观视觉效果上也呈现出更好的重建效果。具体在Set14测试集上,该模型4倍重建结果的峰值信噪比相对于对比模型平均提升了0.85 dB,结构相似度平均提升了0.034,充分证明了该算法模型的有效性。 展开更多
关键词 图像处理 超分辨率重建 u网络 残差连接 神经网络 特征融合 注意力机制 亚像素卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部