期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于改进U^(2)-Net的摇床精矿带图像分割方法
1
作者 刘惠中 邹起华 《传感器与微系统》 北大核心 2025年第5期124-128,共5页
为提升选矿摇床的自动化水平,提出一种基于改进U^(2)-Net的摇床精矿带特征提取算法。首先,利用限制对比度自适应直方图均衡化和自适应Gamma校正对图像进行预处理;然后,在U^(2)-Net的基础上,引入注意力(Attention)机制以突出摇床精矿带... 为提升选矿摇床的自动化水平,提出一种基于改进U^(2)-Net的摇床精矿带特征提取算法。首先,利用限制对比度自适应直方图均衡化和自适应Gamma校正对图像进行预处理;然后,在U^(2)-Net的基础上,引入注意力(Attention)机制以突出摇床精矿带形状、边缘等显著特征;同时,使用特征融合模块(FFM)从不同角度提取图像的上下文信息以关注更多的边缘细节信息,并对通道信息赋予了权重以突出显著特征。经实验测试表明改进后的方法优于U^(2)-Net原始算法,平均交并比达到98.29%,平均像素精度达到99.78%,查准率达到98.86%;相比于原始算法,平均交并比提升0.39%,平均像素精度提升0.42%,查准率提升0.54%,取得较好分割效果。 展开更多
关键词 选矿摇床 深度学习 U^(2)-net 注意力机制 特征融合
在线阅读 下载PDF
基于U^(2)-Net和CBAM融合注意力的双模态睡眠分期研究 被引量:1
2
作者 赵倩 李锦 +2 位作者 凤飞龙 强宁 胡静 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期1-11,共11页
针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Ne... 针对当前自动睡眠分期方法存在的难点问题,提出了一种结合U^(2)-Net和CBAM融合注意力对EEG-ECG双模态信号进行自动睡眠分期的方法。首先,采用MIT-BIH公开数据集中的EEG-ECG信号进行预处理;然后,利用添加了多尺度特征提取模块的U^(2)-Net网络并行提取EEG和ECG中的波形特征;其次,利用CBAM融合注意力对全部特征进行权重分配;最后,使用Softmax激活函数对睡眠时期进行六分类。结果表明:基于U^(2)-Net和CBAM融合注意力模型进行睡眠分期时,使用ECG单模态信号的六分类总体准确率为80.2%,F1分数为75.3%;使用EEG单模态信号的六分类总体准确率为85.8%,F1分数为81.7%;使用EEG-ECG双模态信号的六分类总体准确率为90.4%,F1分数为85.6%。提出的双模态睡眠分期模型是可行有效的,并且为自动睡眠分期提供了一种新的思路。 展开更多
关键词 自动睡眠分期 EEG-ECG双模态信号 U^(2)-net网络 CBAM融合注意力
在线阅读 下载PDF
基于U^(2)-Net的岩体内部结构面智能识别研究
3
作者 白万明 赵宇 +2 位作者 刘艳彪 马骏 徐帅 《金属矿山》 北大核心 2025年第4期219-225,共7页
结构面对于岩体力学行为和变形破坏机制具有重要影响。快速精确获取结构面分布特征和参数信息对于深部工程岩体稳定性和灾害孕育机制分析具有重要意义。钻孔摄像是一种岩体内部结构面探测新技术,但对钻孔图像中结构面的识别仍以人工辨... 结构面对于岩体力学行为和变形破坏机制具有重要影响。快速精确获取结构面分布特征和参数信息对于深部工程岩体稳定性和灾害孕育机制分析具有重要意义。钻孔摄像是一种岩体内部结构面探测新技术,但对钻孔图像中结构面的识别仍以人工辨识为主,存在工作量大、处理速度慢与人为误差大等问题。基于此,开展了基于U^(2)-Net卷积神经网络的钻孔图像结构面智能识别研究。首先收集20个钻孔1013张钻孔图像;其次,应用图像翻转、色彩抖动、模糊处理和Mixup等数据扩充方法,将数据集扩充到12421张,建立钻孔摄像数据集,解决结构面分割网络训练过程中样本不足的问题;然后,基于深度学习框架PyTorch,设置学习率0.001,训练批次为4,使用Adam优化器,在训练过程中自适应调整学习率,建立结构面智能识别模型;模型在置信度阈值为0.7时F度量值达到了最大值0.749,在召回率大于0.5范围内精确率最高可达0.85,实现了结构面区域的完整分割。与人工识别方式相比,在重合度50%的条件下,U^(2)-Net网络识别率达到了94.8%,表明该网络具有较高的识别精确率与一定的泛化性。 展开更多
关键词 钻孔摄像 结构面 智能提取 U2-net卷积神经网络
在线阅读 下载PDF
基于DCGAN和U^(2)-Net模型的齿轮点蚀辨识
4
作者 刘妤 谭钦宜 古前程 《振动与冲击》 北大核心 2025年第10期301-310,共10页
结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCG... 结合改建的齿轮试验台能够在线获取齿轮工作齿面图像的优势,探讨了基于机器视觉技术实现齿轮点蚀辨识的方法,并开展了试验研究。针对齿轮点蚀样本稀缺,采用深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN),实现了样本的多样化、高质量扩增;结合前期研究基础,提取了齿轮的有效工作齿面,实现了齿面倾斜校正和畸变修正;引入ECA注意力机制,改进了U^(2)-Net模型,实现了齿轮点蚀图像感兴趣区域的精确分割;在此基础上,通过统计齿轮历史点蚀率,构建了基于图像信号的齿轮点蚀辨识模型,实现了齿轮点蚀辨识。结果表明:采用机器视觉技术实现齿轮点蚀辨识的方法是可行的,基于DCGAN和U^(2)-Net模型的齿轮点蚀识别准确率达93.56%。研究成果可为齿轮点蚀辨识提供一种更为直接、可靠的方法,对于机械装备的状态监测有一定的参考价值。 展开更多
关键词 齿轮 点蚀 模式识别 深度卷积生成对抗网络(DCGAN) U^(2)-net
在线阅读 下载PDF
基于U^(2)-Net+的透水混凝土CT影像孔隙分割 被引量:1
5
作者 侯斌 孙水发 +2 位作者 张蕊 崔文超 李玉博 《水电能源科学》 北大核心 2024年第2期62-66,共5页
针对现阶段主流的透水混凝土CT影像孔隙分割方法存在的问题,提出了一种堆叠高效RSU模块的U^(2)-Net+的图像分割方法。该方法通过堆叠高效的RSU模块,在网络中引入了更多的上采样节点和跳跃连接,还原了更多下采样阶段丢失的特征图细节;在... 针对现阶段主流的透水混凝土CT影像孔隙分割方法存在的问题,提出了一种堆叠高效RSU模块的U^(2)-Net+的图像分割方法。该方法通过堆叠高效的RSU模块,在网络中引入了更多的上采样节点和跳跃连接,还原了更多下采样阶段丢失的特征图细节;在编码阶段增加了一个可学习的下采样操作,进一步提升了网络对细节的捕获能力;简化了原网络的深度监督,避免了底层特征图对融合输出特征图的负面影响;将单一的标准二分类交叉熵损失函数改为Focal loss和IoU loss组成的混合损失函数,提升了网络对高噪声孔隙的关注度;最后由于数据集的特点加网络改进的提升,原网络中各模块的中间通道数得以进一步缩减,减小了网络体积。试验结果表明,U^(2)-Net+相比U^(2)-Net†在保证轻量化和快速性的同时,平均交并比、精确度、F1得分由94.12%、88.89%、93.28%分别提升至94.24%、91.15%、94.29%;U^(2)-Net+综合指标优于U-Net、U-Net++、U-Net3+、U^(2)-Net、U^(2)-Net†,各指标相较于主流的阈值分割算法至少提高23.29%,实现了透水混凝土CT影像孔隙的精准、快速分割。 展开更多
关键词 透水混凝土CT影像 图像分割 深度学习 U^(2)-net
在线阅读 下载PDF
基于改进U^(2)-Net模型的混凝土结构表面裂缝检测 被引量:2
6
作者 程浩东 李怡静 +2 位作者 李玥康 胡强 王姣 《水利水电技术(中英文)》 北大核心 2024年第6期159-171,共13页
【目的】背景复杂的混凝土结构表面裂缝连续性差、识别率低,基于深度学习的裂缝检测方法存在模型参数量大的问题。【方法】为此,结合U^(2)-Net框架构建了一种聚合多尺度信息的轻量级模型U^(2)-Net_Aggregation,用于复杂背景下的裂缝特... 【目的】背景复杂的混凝土结构表面裂缝连续性差、识别率低,基于深度学习的裂缝检测方法存在模型参数量大的问题。【方法】为此,结合U^(2)-Net框架构建了一种聚合多尺度信息的轻量级模型U^(2)-Net_Aggregation,用于复杂背景下的裂缝特征学习。该模型通过增加跳跃连接,使得每个解码层均聚合该层以上所有浅层编码特征,以获得足够的特征细节,提升裂缝分割精度;利用深度可分离卷积(Depthwise Separable Convolution, DSC)对原本的残差模块(ReSidual U-blocks, RSU)进行改进,提出了新的残差模块(RSU-DSC-ECA),来降低聚合多尺度信息时带来的模型复杂度提升的问题,其中的通道注意力机制(Efficient Channel Attention, ECA)可提升模型对裂缝区域的敏感性和对复杂背景的抗干扰能力。【结果】在三组裂缝数据集上进行消融试验,改进后的模型(U^(2)-Net_Aggregation)相较于U^(2)-Net在准确率、交并比、综合评价指标上均有优异的表现。为了验证模型对复杂背景中裂缝的识别能力,利用无人机实地采集的某混凝土结构数据进行试验,其检测效果优于FCN、SegNet、U-Net和U^(2)-Net。【结论】改进后的模型相比U^(2)-Net在召回率、交并比和综合评价指标方面分别提高了4.18%、2.97%和2.03%,可借助无人机影像快速准确地检测出裂缝,为结构裂缝检测提供一种新的方法。 展开更多
关键词 混凝土结构 裂缝检测 深度学习 语义分割 U^(2)-net 神经网络 混凝土
在线阅读 下载PDF
基于U^(2)-Net的高精度多套层位追踪方法及应用
7
作者 张世成 许辉群 +2 位作者 杨平 孙颖 杨梦琼 《石油地球物理勘探》 EI CSCD 北大核心 2024年第5期925-937,共13页
层位追踪是地震资料解释中一项基础且重要的工作,常规智能层位追踪方法的精度难以满足实际生产需求。为此,提出了一种基于U^(2)-Net的高精度多套层位追踪方法。首先,设计一种充填标签的制作方法,遍历地震数据每个像素点,判断当前像素点... 层位追踪是地震资料解释中一项基础且重要的工作,常规智能层位追踪方法的精度难以满足实际生产需求。为此,提出了一种基于U^(2)-Net的高精度多套层位追踪方法。首先,设计一种充填标签的制作方法,遍历地震数据每个像素点,判断当前像素点所在位置并为其划分一个层位区域;对于穿过断层的层位,则自动搜寻相邻层位,实现非全区层位、断层等复杂条件下的地震反射层位及不整合面的充填标签的制作;然后,利用充填标签,采用U^(2)-Net网络模型对F3数据体和M工区地震资料进行训练。与U-Net+PPM网络模型相比,U^(2)-Net网络模型的预测精度更高,稳定性更好,泛化性更强,训练时间更短,且预测复杂地区的地震反射层位的准确率和平均交并比都大于95%。该方法可以较好地适应低信噪比地震资料的层位追踪。 展开更多
关键词 U^(2)-net 语义分割 层位标签 多套层位追踪 不整合面
在线阅读 下载PDF
多尺度非对称卷积的轻量级U2-Net医学影像语义分割模型
8
作者 孙水发 王清华 +4 位作者 邹耀斌 唐庭龙 侯斌 吴义熔 崔文超 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第11期138-146,共9页
基于U2-Net网络结构,设计了一种运行更高效、分割更准确的医学影像语义分割模型。通过多尺度非对称卷积核代替传统的注意力机制以及降低原U2-Net网络的层数,减少模型参数量;通过改变U2-Net网络连接方式,使用U-Net++网络的跳跃连接方式,... 基于U2-Net网络结构,设计了一种运行更高效、分割更准确的医学影像语义分割模型。通过多尺度非对称卷积核代替传统的注意力机制以及降低原U2-Net网络的层数,减少模型参数量;通过改变U2-Net网络连接方式,使用U-Net++网络的跳跃连接方式,使模型在传递特征信息时保持完整性,减少信息损失,使分割边缘更加精确且连续;根据正负样本不均衡和难易不同的问题设计了避免在训练过程中大量简单负样本占据主导地位的二分类交叉熵损失函数(BCE Loss),更倾向于挖掘前景区域的骰子损失函数(Dice Loss)以及更偏向于两图的结构相似性的多层级结构相似性损失函数(MS-SSIM Loss)的组合损失函数,用来监督网络优化。实验结果表明:所提算法在DRIVE、STARE数据集上比现有最先进网络模型(SOTA)的F1分数分别提高2.6%、1.4%,在ISIC-2018数据集上比SOTA的DSC指标提高2.6%。对分割结果进行可视化后表明,网络在样本较小的情况下可以充分提取样本信息,提高语义分割效果。 展开更多
关键词 语义分割 医学影像 非对称卷积核 U2-net网络
在线阅读 下载PDF
基于改进U^(2)-Net的透明件划痕检测方法 被引量:14
9
作者 陈其浩 孙林 张倩 《科学技术与工程》 北大核心 2022年第2期620-627,共8页
为了满足透明件表面质量和市场竞争的需求,实现产品表面缺陷的自动化检测至关重要。针对透明件表面划痕快速检测问题,提出了一种基于改进U^(2)-Net的缺陷检测方法。首先,直接应用U^(2)-Net网络进行透明件表面划痕检测的数据集准备、网... 为了满足透明件表面质量和市场竞争的需求,实现产品表面缺陷的自动化检测至关重要。针对透明件表面划痕快速检测问题,提出了一种基于改进U^(2)-Net的缺陷检测方法。首先,直接应用U^(2)-Net网络进行透明件表面划痕检测的数据集准备、网络搭建、损失函数、评估指标;其次,初始化网络进行训练,分析产生误检漏检及低效的原因;最后,优化损失函数,加入正则化技术,并给出在输入数据前加入Mosaic数据增强,解码阶段融入深层可分离卷积以及加入Attention机制的改进方案。结果表明:本文提出的改进方案能够有效分割出不同情况下的划痕,准确率达到0.987,漏检率为0.006,并在检测速度上有19%的提升。可见改进U^(2)-Net的透明件划痕检测方法能够很好满足工业流水线准确检测缺陷的实际需求。 展开更多
关键词 透明件 划痕检测 神经网络 U^(2)-net 语义分割
在线阅读 下载PDF
基于改进U^(2)-Net与迁移学习的无人机影像堤防裂缝检测 被引量:15
10
作者 李怡静 程浩东 +2 位作者 李火坤 王姣 胡强 《水利水电科技进展》 CSCD 北大核心 2022年第6期52-59,共8页
为准确便捷地从大范围背景复杂的堤防表面获取裂缝的形态信息,提出了一种基于改进U^(2)-Net(U^(2)-ADSNet)的裂缝检测方法。该方法在U^(2)-Net中融合深度可分离卷积和扩张卷积,扩大了原有模型的感受野,增强了对细节特征的学习能力,降低... 为准确便捷地从大范围背景复杂的堤防表面获取裂缝的形态信息,提出了一种基于改进U^(2)-Net(U^(2)-ADSNet)的裂缝检测方法。该方法在U^(2)-Net中融合深度可分离卷积和扩张卷积,扩大了原有模型的感受野,增强了对细节特征的学习能力,降低了模型参数;在少量无人机实测影像数据基础上,利用裂缝开源数据集进行迁移学习,降低了训练成本;通过切片预测实现对大范围无人机影像的裂缝检测,利用连通域搜索去除可能的误检。将U^(2)-ADSNet与FCN、SegNet、U-Net和DeepCrack等语义分割模型在堤防裂缝数据集上进行对比,验证了U^(2)-ADSNet的有效性,该模型经过迁移学习后交并比达到78.55%,综合评价指标值为87.87%,可用于堤防裂缝的检测。 展开更多
关键词 堤防 裂缝检测 U^(2)-net 无人机影像 迁移学习 语义分割
在线阅读 下载PDF
基于双流循环映射网络的肖像漫画化
11
作者 孔凡敏 普园媛 +2 位作者 赵征鹏 邓鑫 阳秋霞 《计算机应用研究》 CSCD 北大核心 2023年第12期3854-3858,共5页
肖像风格迁移旨在将参考艺术肖像画中迁移到人物照片上,同时保留人物面部的基本语义结构。然而,由于人类视觉对肖像面部语义结构的敏感性,使得肖像风格迁移任务比一般图像的风格迁移更具挑战性,现有的风格迁移方法未考虑漫画风格的抽象... 肖像风格迁移旨在将参考艺术肖像画中迁移到人物照片上,同时保留人物面部的基本语义结构。然而,由于人类视觉对肖像面部语义结构的敏感性,使得肖像风格迁移任务比一般图像的风格迁移更具挑战性,现有的风格迁移方法未考虑漫画风格的抽象性以及肖像面部语义结构的保持,所以应用到肖像漫画化任务时会出现严重的结构坍塌及特征信息混乱等问题。为此,提出了一个双流循环映射网DSCM。首先,引入了一个结构一致性损失来保持肖像整体语义结构的完整性;其次,设计了一个结合U~2-Net的特征编码器在不同尺度下帮助网络捕获输入图像更多有用的特征信息;最后,引入了风格鉴别器来对编码后的风格特征进行鉴别,从而辅助网络学习到更接近目标图像的抽象漫画风格特征。实验与五种先进方法进行了定性及定量的比较,该方法均优于其他方法,其不仅能够完整地保持肖像的整体结构和面部的基本语义结构,而且能够充分学习到风格类型。 展开更多
关键词 双流循坏映射网络 U~2-net 结构一致性损失 肖像漫画化 风格鉴别器
在线阅读 下载PDF
基于遥感指数与深度学习的黄河冰凌遥感监测识别分析 被引量:3
12
作者 宋文龙 冯天时 +5 位作者 陈龙 何倩 胡军 卢奕竹 冯珺 刘宏洁 《中国水利水电科学研究院学报(中英文)》 北大核心 2024年第1期28-35,共8页
黄河流域特殊的地理位置和环境因素造就了其复杂的凌情特征,及时准确掌握凌汛期间冰凌变化规律与特点是凌汛监测防治的关键任务。卫星遥感可实现黄河冰凌的大范围快速提取,目前常用的方法有遥感指数与深度学习两类,为验证和对比不同方... 黄河流域特殊的地理位置和环境因素造就了其复杂的凌情特征,及时准确掌握凌汛期间冰凌变化规律与特点是凌汛监测防治的关键任务。卫星遥感可实现黄河冰凌的大范围快速提取,目前常用的方法有遥感指数与深度学习两类,为验证和对比不同方法对黄河冰凌遥感监测识别的有效性,基于Sentinel-2遥感数据,利用归一化积雪指数及其改进形式和U^(2)-Net等三种方法对2023年黄河宁蒙段冰凌进行遥感提取。结果表明:NDSI、MNDSI、U^(2)-Net三种方法的结果分类精度分别为83.42%、87.98%和92.01%;Kappa系数分别为0.88、0.90和0.97;三种方法均对冰凌有较好的提取效果,但指数法对于流凌、清沟等其他类型的识别效果较差,浅滩处提取的边界较为杂乱,U^(2)-Net可以精确区分出清沟,提取冰凌边界的效果更好。 展开更多
关键词 黄河 冰凌 卫星遥感 NDSI MNDSI U^(2)-net
在线阅读 下载PDF
无人机智能巡检混凝土裂缝方法和机制研究 被引量:4
13
作者 徐亮 何伟 +1 位作者 叶尔达·叶尔丁达拉 李楠楠 《水利水电技术(中英文)》 北大核心 2024年第S01期249-256,共8页
利用无人机搭载专业设备对坝体混凝土裂缝进行自动化检测和智能识别,可提升大坝表面病害视觉检测自动化水平,为大坝正常维修管理提供高质高效的信息。介绍了YOLO裂缝目标检测算法和U^(2)-net裂缝图像分割模型,以及裂缝参数的测量方法和... 利用无人机搭载专业设备对坝体混凝土裂缝进行自动化检测和智能识别,可提升大坝表面病害视觉检测自动化水平,为大坝正常维修管理提供高质高效的信息。介绍了YOLO裂缝目标检测算法和U^(2)-net裂缝图像分割模型,以及裂缝参数的测量方法和图像识别精度的评价标准。结合某水电站坝顶混凝土裂缝调查场景,分析无人机不同搭载形式与航拍高度和图像地面分辨率的理论关系,并利用YOLO和U^(2)-net算法进行裂缝宽度识别,探究不同航拍参数对裂缝识别精度的影响。最后,综合考虑各巡航场景实际运行要求和成果处理与发布效率,确定坝体裂缝自动化检测运行参数,为高精度识别坝体毫米级宽度裂缝提供一种思路。 展开更多
关键词 大坝 裂缝检测 U^(2)-net 无人机 航拍参数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部