期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
1
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割
2
作者 郑宗生 高萌 +3 位作者 周文睆 王政翰 霍志俊 张月维 《自然资源遥感》 北大核心 2025年第2期11-18,共8页
针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-... 针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-scale dense connected atrous spatial convolution pyramid pooling module, MDCA)和条形池化(spatial pyramid pooling, SP)提取多尺度和空间连续性地物;利用特征增强双注意力并联模块(position paralleling channel attention module, PPCA)衡量特征权重,实现高效表达;采用浅层特征级联模块(cascade low-level feature fusion, CLFF)捕捉被忽略的浅层特征,进一步补充细节。实验结果表明:DMS-Net模型在迭代扩充数据集上的总体精度(overall accuracy, OA)达到89.97%,平均交并比(mean intersection over union, mIoU)达到75.59%,高于传统机器学习方法及U-Net, PSPNet, Deeplabv3+等深度学习模型。分割结果显示,地物结构完整且边缘分割明晰,在实现多尺度的土地覆盖遥感信息提取分析中具有较好的实用价值。 展开更多
关键词 深度学习 全卷积神经网络 多尺度 语义分割 土地覆盖
在线阅读 下载PDF
基于级联MCNN-MMLP双残差网络的短期负荷预测 被引量:1
3
作者 余凯峰 吐松江·卡日 +2 位作者 张紫薇 马小晶 王志刚 《电力系统保护与控制》 北大核心 2025年第2期151-162,共12页
为了解决负荷特性复杂导致负荷预测精度低的问题,提出了一种GWO-VMD和级联MCNN-MMLP双残差网络的短期负荷预测模型。首先,利用由灰狼算法(grey wolf optimize,GWO)优化的变分模态分解(variational mode decomposition,VMD)对原始负荷数... 为了解决负荷特性复杂导致负荷预测精度低的问题,提出了一种GWO-VMD和级联MCNN-MMLP双残差网络的短期负荷预测模型。首先,利用由灰狼算法(grey wolf optimize,GWO)优化的变分模态分解(variational mode decomposition,VMD)对原始负荷数据进行处理,降低原始负荷数据的复杂程度。其次,使用多尺度卷积神经网络(multiscale convolutional neural networks,MCNN)和多层感知机(multi-layer perception,MLP)结合的双残差神经网络对各个模态进行迁移学习训练和预测,并在MLP网络中引入多头注意力机制弥补网络信息瓶颈问题。最后,再次使用MCNN-MMLP双残差模型对初步预测的误差进行预测并校正初值,从而进一步提升预测精确度。通过对实际负荷数据进行分析,本模型的均方误差为5.024(MW)^(2)、均方根误差为2.241 MW、平均绝对百分比误差为0.160%,决定系数为0.996,各性能指标均优于其他传统及智能负荷预测方法。 展开更多
关键词 负荷预测 多尺度卷积神经网络 双残差神经网络 多头注意力机制 迁移学习
在线阅读 下载PDF
血清HBsAg感染的Vis-NIR光谱模式识别研究
4
作者 高乔基 吴振邦 +6 位作者 徐茜 陈敏 刘文轩 曹诚诚 廖敬龙 欧超 潘涛 《分析测试学报》 北大核心 2025年第6期1016-1023,共8页
乙肝表面抗原(HBsAg)是乙肝病毒感染的重要标志物。该文建立了血清HBsAg感染的无试剂可见-近红外(Vis-NIR)光谱模式识别新方法。收集到临床血清样品1243例(HBsAg阳性601、阴性642),采用训练-预测-检验实验设计,搭建了基于多尺度卷积、压... 乙肝表面抗原(HBsAg)是乙肝病毒感染的重要标志物。该文建立了血清HBsAg感染的无试剂可见-近红外(Vis-NIR)光谱模式识别新方法。收集到临床血清样品1243例(HBsAg阳性601、阴性642),采用训练-预测-检验实验设计,搭建了基于多尺度卷积、压缩-激励网络(SE Net)注意力机制和多尺度膨胀卷积的新型卷积神经网络(CNN)集成算法,连同经典的偏最小二乘-判别分析(PLS-DA)和普通浅层CNN算法,被用于建立HBsAg阳性和阴性血清的Vis-NIR光谱判别模型。该研究采用标准正态变量(SNV)变换进行光谱预处理。基于近红外区(780~1118 nm)经SNV处理的光谱的PLS-DA模型和新型CNN模型取得更优的建模效果,新型CNN模型的灵敏度(SEN)达到99.3%,漏诊率(FNR)达到0.7%。结果表明,采用Vis-NIR光谱精准判别HBsAg阳性和阴性血清具有可行性,提出的新型深度学习算法可望应用于其他光谱分析领域。 展开更多
关键词 可见-近红外光谱模式识别 血清HBsAg感染判别 偏最小二乘-判别分析(PLS-DA) 卷积神经网络(CNN) SE Net注意力机制 多尺度膨胀卷积
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
5
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于多尺度CNN与双阶段注意力机制的轴承工况域泛化故障诊断 被引量:2
6
作者 乔卉卉 赵二贤 +3 位作者 郝如江 刘婕 刘帅 王勇超 《振动与冲击》 北大核心 2025年第2期267-278,共12页
变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参... 变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参与训练,这在工程实际中难以实现,因此无法实现未知工况的轴承故障诊断。针对以上问题,提出了一种基于多尺度卷积神经网络与双阶段注意力机制网络(two-stage attention multiscale convolutional network model, TSAMCNN)模型的轴承工况域泛化故障诊断方法,其中多尺度特征提取模块从多个尺度上提取时域振动信号中更丰富的故障信息;然后,双阶段注意力模块从通道和空间两个维度自适应地增强故障敏感特征并抑制工况敏感特征和无用特征;最终,提取工况域不变故障特征,从而实现工况域泛化轴承故障诊断。通过变转速和变负载列车轮对轴承故障诊断试验,证明了TSAMCNN模型可提高变工况条件下轴承故障诊断的准确率、抗噪性能和工况域泛化能力。此外,对双阶段注意力机制的权重向量和模型各模块提取的特征进行可视化分析,提高了模型可解释性。 展开更多
关键词 列车轮对轴承 工况域泛化故障诊断 卷积神经网络(CNN) 多尺度特征提取 注意力机制
在线阅读 下载PDF
面向分割的局部分块与全局多尺度注意力机制
7
作者 谭荆彬 赵旭俊 苏慧娟 《计算机工程与设计》 北大核心 2025年第4期1141-1148,共8页
现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个... 现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。 展开更多
关键词 卷积神经网络 注意力机制 局部信息 分块策略 细节感知 全局多尺度信息 语义分割
在线阅读 下载PDF
摩尔纹图案自动去除技术综述 被引量:3
8
作者 亓文法 刘宇鑫 郭宗明 《计算机研究与发展》 EI CSCD 北大核心 2024年第3期728-747,共20页
如今,数码相机和智能手机在人们的生活中扮演着越来越重要的角色,已经成为人们感知世界、记录信息和沟通交流的主要工具.当使用这些设备拍摄电子屏幕时,显示设备和摄像头传感器网格之间往往会发生混叠,通常导致图片中存在不规则分布的... 如今,数码相机和智能手机在人们的生活中扮演着越来越重要的角色,已经成为人们感知世界、记录信息和沟通交流的主要工具.当使用这些设备拍摄电子屏幕时,显示设备和摄像头传感器网格之间往往会发生混叠,通常导致图片中存在不规则分布的摩尔纹干扰图案,从而严重影响了拍摄图像的视觉质量效果.因此,摩尔纹图案去除方法研究对于拍摄图像的后期处理具有重要意义.为此,详细梳理了摩尔纹去除研究的发展脉络,并根据不同的适用场景和技术实现将现有方法分为2类:基于先验知识的摩尔纹去除方法和基于深度学习的摩尔纹去除方法.鉴于深度学习网络中训练数据集的收集和对齐方式不同,该类方法又分为基于卷积神经网络(CNN)的摩尔纹去除方法和基于生成式对抗网络(GAN)的摩尔纹去除方法.在此基础上,选择相同的公开数据集,对主流的深度学习方法进行算法实现和性能对比分析,并分别总结了各类方法的优缺点.最后,对未来的研究方向进行展望. 展开更多
关键词 摩尔纹图案 图像恢复 多尺度 深度学习 卷积神经网络 生成式对抗网络
在线阅读 下载PDF
基于Transformer的多尺度遥感语义分割网络 被引量:4
9
作者 邵凯 王明政 王光宇 《智能系统学报》 CSCD 北大核心 2024年第4期920-929,共10页
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器... 为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。 展开更多
关键词 遥感图像 语义分割 卷积神经网络 TRANSFORMER 全局上下文信息 多尺度感受野 编码器 解码器
在线阅读 下载PDF
采用多尺度自适应选择卷积神经网络的轴承故障诊断研究 被引量:4
10
作者 张玺君 尚继洋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期127-135,共9页
针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征... 针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征,合并为初始特征;构建多尺度自适应选择卷积块,提取不同尺度的特征,利用改进的注意力机制自适应调整不同尺度的特征权重,加入残差连接,防止模型退化;通过分类器完成轴承故障诊断。在凯斯西储大学轴承数据集和XJTU-SY轴承数据集上的实验结果表明:在模型改进实验中,与没有改进注意力机制的模型相比,所提模型的轴承故障诊断准确率提升了1.98%;在不同信噪比的噪声干扰环境中,所提模型的轴承故障诊断准确率均高于93%。 展开更多
关键词 轴承故障诊断 卷积神经网络 自适应融合 注意力机制 多尺度特征
在线阅读 下载PDF
基于CBAM-CNN的涡旋压缩机故障诊断 被引量:2
11
作者 刘涛 麻德权 《振动.测试与诊断》 EI CSCD 北大核心 2024年第5期900-906,1036,共8页
针对涡旋压缩机振动信号不平稳和噪声情况下故障振动信号弱、需要人为提取故障特征以及准确率有待进一步提高的问题,提出基于多尺度注意力机制(convolutional block attention mechanism,简称CBAM)-卷积神经网络(convolutional neural n... 针对涡旋压缩机振动信号不平稳和噪声情况下故障振动信号弱、需要人为提取故障特征以及准确率有待进一步提高的问题,提出基于多尺度注意力机制(convolutional block attention mechanism,简称CBAM)-卷积神经网络(convolutional neural network,简称CNN)涡旋压缩机故障诊断方法。首先,通过多个不同尺度的卷积核对振动信号转化为灰度图的故障特征进行全面提取,并引入注意力机制,通过调整权重值的方式提取重要的故障特征;其次,利用降维卷积模块、深度可分离卷积模块和残差模块提取更高维度的深层次故障特征,提升网络计算效率;最后,设置舍弃率为0.5的Dropout层防止过拟合,提升了网络的鲁棒性、抗干扰能力和泛化能力。实验结果证明,该方法在无噪声和添加不同信噪比噪声的情况下,均能有效地对涡旋压缩机故障进行分类,具有更高的识别准确性和更快的收敛能力。 展开更多
关键词 涡旋压缩机 卷积神经网络 注意力机制 多尺度 故障诊断
在线阅读 下载PDF
融合注意力机制的刀具磨损预测方法 被引量:2
12
作者 董靖川 武晓鑫 +1 位作者 高宇博 苏德鹏 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第4期362-373,共12页
刀具的磨损状态影响着工件表面质量与加工稳定性,故实现其磨损量的准确监测对于保证加工可靠性、维持生产加工连续性具有积极作用.为进一步提高刀具磨损预测模型的泛化性能和准确度,提出一种融合注意力机制的多尺度卷积双向门控循环(mul... 刀具的磨损状态影响着工件表面质量与加工稳定性,故实现其磨损量的准确监测对于保证加工可靠性、维持生产加工连续性具有积极作用.为进一步提高刀具磨损预测模型的泛化性能和准确度,提出一种融合注意力机制的多尺度卷积双向门控循环(multiscale convolutional bidirectional gated recurrent unit-attention,MSCBGRU-A)神经网络的刀具磨损预测方法,其由特征拓展模块、多尺度卷积模块、双向GRU模块、注意力模块、回归模块组成.首先,将切削力、声发射、振动信号作为输入信号,输入信号通过多尺度卷积模块获得多个尺度的刀具磨损输出特征图,将多个卷积通道输出的特征图输入到连接层进行首尾和层叠两种方式的连接来获得两种输出数据.然后,将两种输出数据分别输入到双向GRU模块与注意力模块,通过双向GRU模块学习输出特征图动态变化来获取时序特征,通过注意力模块对多尺度卷积神经网络的输出进行权值分配,强化对刀具磨损预测结果贡献度更大的特征.最后,通过回归模块对磨损值进行预测.经过对比实验引入混合域注意力机制的基于卷积块的注意力机制(convolutional block attention mechanism,CBAM),获得MSCBGRU-CBAM模型,并且通过绘制CBAM的注意力权重图证明注意力机制可以自适应地关注与刀具磨损更相关的特征.与其他深度学习模型进行对比实验表明,MSCBGRU-CBAM模型具有最高的预测精度,且与未使用注意力机制的MSCBGRU模型相比,RMSE降低19.3%,MAE降低17.7%,R 2提高2.7%. 展开更多
关键词 刀具磨损预测 多尺度卷积神经网络 注意力机制 门控循环单元
在线阅读 下载PDF
比例融合与多层规模感知的人群计数方法
13
作者 孟月波 张娅琳 王宙 《智能系统学报》 CSCD 北大核心 2024年第2期307-315,共9页
针对密集场景下人群图像拍摄视角或距离多变造成的多尺度特征获取不足、融合不佳和全局特征利用不充分等问题,提出一种比例融合与多层规模感知的人群计数网络。首先采用骨干网络VGG16提取人群密度初始特征;其次,设计多层规模感知模块,... 针对密集场景下人群图像拍摄视角或距离多变造成的多尺度特征获取不足、融合不佳和全局特征利用不充分等问题,提出一种比例融合与多层规模感知的人群计数网络。首先采用骨干网络VGG16提取人群密度初始特征;其次,设计多层规模感知模块,获得人群多尺度信息的丰富表达;再次,提出比例融合策略,根据卷积层捕获的特征权重重构多尺度信息,提取显著性人群特征;最后,采用卷积回归策略进行密度图的回归。同时,提出一种局部一致性损失函数,通过区域化密度图的方式增强生成密度图与真实密度图的相似度,提高计数性能。在多个人群数据集上的试验结果表明,所提模型优于近年人群计数的先进方法,且在车辆计数上有较好推广性。 展开更多
关键词 人群密度估计与计数 卷积神经网络 多层规模感知 比例融合 局部一致性损失 密度图回归 多尺度信息 空洞卷积
在线阅读 下载PDF
结合SE-VAE与M1DCNN的小样本数据下轴承故障诊断 被引量:4
14
作者 李梦男 李琨 +1 位作者 叶震 高宏宇 《机械科学与技术》 CSCD 北大核心 2024年第5期773-780,共8页
针对轴承故障诊断中故障样本数量少导致诊断正确率低的问题,提出了一种基于注意力机制变分自编码器(SE-VAE)和多尺度一维卷积神经网络(M1DCNN)的轴承故障诊断方法。将轴承数据集的训练集输入到SE-VAE中进行训练,生成与训练样本分布相似... 针对轴承故障诊断中故障样本数量少导致诊断正确率低的问题,提出了一种基于注意力机制变分自编码器(SE-VAE)和多尺度一维卷积神经网络(M1DCNN)的轴承故障诊断方法。将轴承数据集的训练集输入到SE-VAE中进行训练,生成与训练样本分布相似的生成样本,并添加到训练集中增加训练集的样本数量。将扩充后的训练集输入到M1DCNN中进行训练,随后将训练好的模型应用于测试集,输出故障诊断结果。实验结果表明,所提方法能够在不同负载的小样本轴承故障数据集上取得较好的故障诊断准确率。 展开更多
关键词 轴承故障诊断 变分自编码器 注意力机制 多尺度一维卷积神经网络 小样本
在线阅读 下载PDF
基于注意力机制的多尺度融合人群计数算法 被引量:1
15
作者 谢新林 尹东旭 +1 位作者 张涛源 谢刚 《计算机工程》 CAS CSCD 北大核心 2024年第3期290-297,共8页
针对人群计数图像人头尺度变化大、背景噪声高等问题,提出一种基于注意力机制的多尺度融合人群计数算法,以充分聚合多尺度信息,并有效区分背景噪声。构建基于残差连接的空洞空间金字塔池化,通过残差结构以及多个不同扩张率的空洞卷积在... 针对人群计数图像人头尺度变化大、背景噪声高等问题,提出一种基于注意力机制的多尺度融合人群计数算法,以充分聚合多尺度信息,并有效区分背景噪声。构建基于残差连接的空洞空间金字塔池化,通过残差结构以及多个不同扩张率的空洞卷积在捕获多尺度头部目标特征的同时融入浅层特征图的空间细节信息,提高特征图质量;构建跨层多尺度特征融合模块,融合浅层和深层分支不同大小的边缘细节信息和上下文语义信息,并设计基于多分支的特征融合模块,融合不同感受野大小的多尺度信息以缓解大规模人头尺度变化的问题;构建基于矩阵相似运算的通道和空间注意力机制模块提取像素级特征权重,加强网络对于背景和人头目标的判别能力,自适应矫正位置信息。实验结果表明,相比11种对比算法的最优值,所提算法在SHA数据集上的平均绝对误差和均方根误差指标降低1.4%、4.2%,在UCF_CC_50数据集上降低4.9%、1.8%,能够精确地预测人群分布状态和估计人群数量,生成高质量的人群密度图。 展开更多
关键词 人群计数 多尺度融合 注意力机制 卷积神经网络 密度图
在线阅读 下载PDF
基于模糊多尺度特征的遥感图像分割网络 被引量:1
16
作者 李子怡 曲婷婷 +1 位作者 崇乾鹏 徐金东 《计算机应用》 CSCD 北大核心 2024年第11期3581-3586,共6页
受成像距离、光照、地物特征、环境等因素影响,遥感图像中同一类别物体可能存在一定差异,而不同类别的物体反而显示相似的视觉特征,这导致在分割时存在着不确定性,即类内异质与类间模糊。为了解决此问题,提出一种用于遥感图像分割的模... 受成像距离、光照、地物特征、环境等因素影响,遥感图像中同一类别物体可能存在一定差异,而不同类别的物体反而显示相似的视觉特征,这导致在分割时存在着不确定性,即类内异质与类间模糊。为了解决此问题,提出一种用于遥感图像分割的模糊多尺度卷积神经网络(FMCNet)。该网络通过提取图像中不同尺度、大小和宽高比的感受野,充分表征遥感物体的细节信息,并利用模糊逻辑有效地表达像素与其相邻像素之间的关系,进而解决遥感图像分割中的不确定性问题。实验结果表明,FMCNet在ISPR Vaihingen和Potsdam数据集上的整体准确率(OA)分别为85.3%和86.3%,优于现有流行的语义分割方法。 展开更多
关键词 语义分割 卷积神经网络 模糊逻辑 遥感图像 多尺度特征
在线阅读 下载PDF
结合密集残差块和注意力的真实图像去噪网络
17
作者 余卓璞 周冬明 +2 位作者 周联敏 赵倩 尹稳 《计算机工程与设计》 北大核心 2024年第6期1812-1821,共10页
为有效去除真实图像噪声并保留图像边缘信息,提出一种结合密集网络思想和并行极化自注意力机制的真实去噪算法。使用3条并行结构处理不同尺度的特征信息,其中每条分支由两个密集注意力块串联而成,形成残差结构。使用选择性核融合机制,... 为有效去除真实图像噪声并保留图像边缘信息,提出一种结合密集网络思想和并行极化自注意力机制的真实去噪算法。使用3条并行结构处理不同尺度的特征信息,其中每条分支由两个密集注意力块串联而成,形成残差结构。使用选择性核融合机制,获取不同深度下的特征信息,将其融合并使用注意力机制去除冗余信息,获取干净图像。实验结果表明,该算法在SIDD、DND、PolyU测试集上的峰值信噪比分别为39.32 dB、39.52 dB和37.36 dB,结构相似性分别为0.908、0.951和0.952,在SIDD和PolyU测试集上的图像通用质量指标值为0.992和0.982,在去噪任务上可以达到较好的性能,提高了图像视觉的质量。 展开更多
关键词 真实图像去噪 深度学习 卷积神经网络 密集残差网络 多尺度 注意力机制 深度卷积
在线阅读 下载PDF
基于多尺度图卷积的高光谱图像分类
18
作者 温馨 李禄 +3 位作者 范军芳 胡智峰 周锋 吴亚平 《激光与红外》 CAS CSCD 北大核心 2024年第8期1300-1308,共9页
近年来,卷积神经网络在高光谱图像分类领域取得了显著的进步,但是其只能对图像进行规则格网运算,不能自适应的进行特征聚合。因此,本文提出了一种基于分段森林的多尺度图卷积神经网络的高光谱图像分类方法,主要有四个步骤:首先使用主成... 近年来,卷积神经网络在高光谱图像分类领域取得了显著的进步,但是其只能对图像进行规则格网运算,不能自适应的进行特征聚合。因此,本文提出了一种基于分段森林的多尺度图卷积神经网络的高光谱图像分类方法,主要有四个步骤:首先使用主成分分析进行降维,根据图像的空间信息构建多尺度的分段森林,建立子树之间关系;然后提出了一种基于图卷积网络的U-net模型架构,通过池化和解池化建立多个尺度之间的图结构特征的转换;网络通过图卷积神经网络进行自适应的特征聚合,并在编码器和解码器之间采用跳层连接融合了多尺度特征;最后通过SoftMax进行节点的半监督分类。实验在公开的高光谱数据集上进行了验证,均取得了较好的分类精度,表明了该方法的有效性。 展开更多
关键词 高光谱图像 多尺度 分段森林 图卷积神经网络 子树
在线阅读 下载PDF
基于AgriSwin的植物病虫害检测算法
19
作者 刘微 张傲 《电子测量技术》 北大核心 2024年第24期160-170,共11页
针对现代农业中植物病虫害检测所面临的多尺度特征和复杂背景处理难题,本文提出了一种高效且精准的检测模型AgriSwin,以提升农业病虫害检测的精度和效率。AgriSwin模型在Swin Transformer的基础上,融合了扩张特征聚合模块与自适应空间... 针对现代农业中植物病虫害检测所面临的多尺度特征和复杂背景处理难题,本文提出了一种高效且精准的检测模型AgriSwin,以提升农业病虫害检测的精度和效率。AgriSwin模型在Swin Transformer的基础上,融合了扩张特征聚合模块与自适应空间卷积模块。扩张特征聚合模块通过不同扩张率的卷积层实现多尺度特征提取,并利用全局特征信息的自适应加权机制优化了特征融合效果。自适应空间卷积模块则通过生成自适应权重,对特征图进行动态加权,从而在复杂背景下增强局部和全局信息的捕捉能力。实验结果表明,AgriSwin模型在PlantDoc、PlantVillage和自建数据集上的检测精确率分别达到79.65%、99.90%和95.08%。此外,该模型的参数量比Swin Transformer-T减少了25.63%,在保持高精确率的同时显著降低了内存和计算资源的占用,展示了在大规模农业应用中的广泛潜力。 展开更多
关键词 植物病虫害检测 深度学习 卷积神经网络 多尺度卷积 自适应空间卷积 特征聚合 农业自动化
在线阅读 下载PDF
深度多尺度融合注意力残差人脸表情识别网络 被引量:13
20
作者 高涛 杨朝晨 +2 位作者 陈婷 邵倩 雷涛 《智能系统学报》 CSCD 北大核心 2022年第2期393-401,共9页
针对人脸表情呈现方式多样化以及人脸表情识别易受光照、姿势、遮挡等非线性因素影响的问题,提出了一种深度多尺度融合注意力残差网络(deep multi-scale fusion attention residual network,DMFA-ResNet)。该模型基于ResNet-50残差网络... 针对人脸表情呈现方式多样化以及人脸表情识别易受光照、姿势、遮挡等非线性因素影响的问题,提出了一种深度多尺度融合注意力残差网络(deep multi-scale fusion attention residual network,DMFA-ResNet)。该模型基于ResNet-50残差网络,设计了新的注意力残差模块,由7个具有三条支路的注意残差学习单元构成,能够对输入图像进行并行多卷积操作,以获得多尺度特征,同时引入注意力机制,突出重点局部区域,有利于遮挡图像的特征学习。通过在注意力残差模块之间增加过渡层以去除冗余信息,简化网络复杂度,在保证感受野的情况下减少计算量,实现网络抗过拟合效果。在3组数据集上的实验结果表明,本文提出的算法均优于对比的其他先进方法。 展开更多
关键词 人脸表情识别 残差网络 多尺度特征 注意力机制 遮挡人脸 卷积神经网络 特征融合 深度学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部