In this paper, author investigated the effect of the Coulomb potential of the core of atomic helium on the rescattering processes. Through the calculation author concluded that the Coulomb potential effect may not pla...In this paper, author investigated the effect of the Coulomb potential of the core of atomic helium on the rescattering processes. Through the calculation author concluded that the Coulomb potential effect may not play an important role in causing the discrepancy between the experimental data and theoretical results of Kuchievs model, and the NS ionization is dependent on the frequency of the laser field. Furthermore, it is concluded that the strength of the laser field and the charge number of the core affect the frequency regime corresponding to the peak value of the NS ionization rate.展开更多
利用强场近似(Strong field approximation,SFA)方法研究氢负离子(H^-)在强激光场中双光子电离的能量谱,所得到的电离谱随角度的变化规律与实验结果符合得很好.进一步的研究表明,H^-离子在强激光场中双光子电离的能量谱与有质动力能有关...利用强场近似(Strong field approximation,SFA)方法研究氢负离子(H^-)在强激光场中双光子电离的能量谱,所得到的电离谱随角度的变化规律与实验结果符合得很好.进一步的研究表明,H^-离子在强激光场中双光子电离的能量谱与有质动力能有关.激光场强度越大,光电子的有质动力能也越大,能量谱向左移动越明显.我们的结果表明,使用强场近似是一种研究负离子在强激光场中电离过程的有效方法.展开更多
文摘In this paper, author investigated the effect of the Coulomb potential of the core of atomic helium on the rescattering processes. Through the calculation author concluded that the Coulomb potential effect may not play an important role in causing the discrepancy between the experimental data and theoretical results of Kuchievs model, and the NS ionization is dependent on the frequency of the laser field. Furthermore, it is concluded that the strength of the laser field and the charge number of the core affect the frequency regime corresponding to the peak value of the NS ionization rate.
文摘利用强场近似(Strong field approximation,SFA)方法研究氢负离子(H^-)在强激光场中双光子电离的能量谱,所得到的电离谱随角度的变化规律与实验结果符合得很好.进一步的研究表明,H^-离子在强激光场中双光子电离的能量谱与有质动力能有关.激光场强度越大,光电子的有质动力能也越大,能量谱向左移动越明显.我们的结果表明,使用强场近似是一种研究负离子在强激光场中电离过程的有效方法.
基金supported by the projects of State Key Development Program for Basic Research of China (2007CB814800, 2007CB815103) Natural Science Foundation of China (61078025, 10725521, 10821062 and 10634020)