This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). The...This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.展开更多
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ...An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.展开更多
This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate ...This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.展开更多
In this article, we show that the generalized logarithmic mean is strictly Schurconvex function for p 〉 2 and strictly Schur-concave function for p 〈 2 on R_+^2. And then we give a refinement of an inequality for t...In this article, we show that the generalized logarithmic mean is strictly Schurconvex function for p 〉 2 and strictly Schur-concave function for p 〈 2 on R_+^2. And then we give a refinement of an inequality for the generalized logarithmic mean inequality using a simple majoricotion relation of the vector.展开更多
基金supported by the Natural Science Foundation China(11126343)Guangxi Natural Science Foundation(2013GXNSFBA019010)+1 种基金supported by Natural Science Foundation China(11071152)Natural Science Foundation of Guangdong Province(10151503101000025,S2011010004511)
文摘This article aims at studying two-direction refinable functions and two-direction wavelets in the setting R^s, s 〉 1. We give a sufficient condition for a two-direction refinable function belonging to L^2(R^s). Then, two theorems are given for constructing biorthogonal (orthogonal) two-direction refinable functions in L^2(R^s) and their biorthogonal (orthogonal) two-direction wavelets, respectively. From the constructed biorthogonal (orthogonal) two-direction wavelets, symmetric biorthogonal (orthogonal) multiwaveles in L^2(R^s) can be obtained easily. Applying the projection method to biorthogonal (orthogonal) two-direction wavelets in L^2(R^s), we can get dual (tight) two-direction wavelet frames in L^2(R^m), where m ≤ s. From the projected dual (tight) two-direction wavelet frames in L^2(R^m), symmetric dual (tight) frames in L^2(R^m) can be obtained easily. In the end, an example is given to illustrate theoretical results.
文摘An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums.
基金This research is funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant number 107.02-2019.330.
文摘This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions.
基金Foundation item: Supported by the Scientific Research Common Program of Beijing Municipal Commission of Education of China(Km200611417009) Suppoted by the Natural Science Foundation of Fujian Province Education Department of China(JA05324)
文摘In this article, we show that the generalized logarithmic mean is strictly Schurconvex function for p 〉 2 and strictly Schur-concave function for p 〈 2 on R_+^2. And then we give a refinement of an inequality for the generalized logarithmic mean inequality using a simple majoricotion relation of the vector.