To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的混合分...分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的混合分割算法-HWIF(Hybrid Watershed and Improved FCM)分割法。与MeanShift算法及区域合并算法相比,该方法充分利用了区域的灰度和区域间的空间信息。实验结果表明该算法能有效克服分水岭算法的过分割问题,且分割效果优于以上两种方法。展开更多
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
文摘分水岭变换是图像分割的一种强有力的形态工具,能够自动生成一系列封闭分割区域。其不足之处是过分割、对噪声敏感。为克服分水岭变换固有的缺点,综合利用非线性滤波和改进的FCM算法优化分水岭变换得出的初始分割,提出了一种新的混合分割算法-HWIF(Hybrid Watershed and Improved FCM)分割法。与MeanShift算法及区域合并算法相比,该方法充分利用了区域的灰度和区域间的空间信息。实验结果表明该算法能有效克服分水岭算法的过分割问题,且分割效果优于以上两种方法。