By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recyc...Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recycling.However,the current battery management technology faces significant challenges,and there is room for development.Digital twin(DT),as a technology that collectively senses,evaluates,predicts,and optimizes characteristics,is promising to contribute to redox flow batteries’operation,maintenance,and management.This paper begins with a brief description of redox flow batteries,followed by a short explanation of the concept and application of DTs.DTs have already made some progress in the field of batteries,and can be applied to solve the problems of redox flow batteries in terms of thermal management and system optimization.Finally,the paper analyzes the combination of redox flow battery and DT architecture,which is expected to contribute to developing DT technology for redox flow batteries.展开更多
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high com...Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.展开更多
Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoe...Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.展开更多
During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configura...During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.展开更多
This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted fr...This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted from waste catalyst.The optimized experimental conditions were determined as follows:the CO reduction temperature was set at 575℃,the reduction time was 1 hour,the CO flow rate was 50 mL/min,and furnace cooling was performed subsequently.Under these conditions,the samples obtained were predominantly composed of single-phase V_(2)O_(3).Microstructural analysis reveals tightly packed grain configurations exhibiting flake-like or block-like morphologies.Significantly,the as-synthesized V_(2)O_(3)demonstrates sufficient purity for fabricating high-performance electrolytes in all-vanadium flow batteries,showing promising electrochemical applicability.展开更多
Al-doped manganese dioxide(MnO_(2))was synthesized by simple hydrothermal method,and a controllable phase transition of the MnO_(2)crystal phase fromβtoδwas achieved.The effects of Al doping concentration on the str...Al-doped manganese dioxide(MnO_(2))was synthesized by simple hydrothermal method,and a controllable phase transition of the MnO_(2)crystal phase fromβtoδwas achieved.The effects of Al doping concentration on the structure and electrochemical properties of electrode materials were studied in detail.The results show that the controlled synthesis requires a synergy between KMnO_(4),MnCl_(2)and AlCl_(3),and that Al^(3+)plays an important role.Compared with the pure phase MnO_(2),the crystallinity of Al-doped MnO_(2)decreases and the specific surface area increases,which provides more active sites for the electrode material.When 3 mmol Al^(3+)is added,the prepared MnO_(2)-3 has the largest specific capacitance and the highest rate performance.The energy density of the asymmetric supercapacitor(ASC)with MnO_(2)-3 as the positive electrode and activated carbon(AC)as the negative electrode can reach 18.4 W·h/kg at the power density of 400 W/kg,and the capacity can maintain 90%of the initial value after 20000 cycles,indicating that Al-doped MnO_(2)has certain practical application value.This study provides favorable guidance for MnO_(2)as a high performance electrode material.展开更多
The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of e...The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of equal strength,and the stirring in the central area of the melt is insufficient,which restricts the efficient progress of the smelting reaction.This study proposes a strong-weak coupling oxygen supply method and establishes an equivalent model based on a large bottom-blown furnace(LBBF)of an enterprise to simulate the bubble characteristics and flow characteristics of the molten pool.The results show that adjusting the flow ratio between the two rows of oxygen lances can create a“strong”and a“weak”coexisting source of disturbance in an LBBF.It is worth noting that when the flow rate ratio of the two rows of oxygen lances is 1.6,the peak velocity generated by the“strong”distur bance source in the molten pool increases by 18.92%,and the disturbance range increases.This method effectively strengthens the stirring in the central area of the molten pool,improves smelting efficiency,and does not produce harmful melt splashes.It provides important guidance for optimizing production practice.展开更多
Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added...Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added to recycled Al-Mg-Si alloys,and their e ffects on the microstructure and mechanical properties of the cast alloys were studied by scanning electron microscopy(SEM)and synchrotron radiation X-ray tomography(SRXT).The results show that the addition of Zr significantly increases the grain sizes due to the“Zr poisoning”;V addition has no significant effect on the grain size.The morphology of Fe-rich phase gradually changes from the large Chinese-script shape to the fine short rod and curved long strip shape,and the distribution uniformity is improved with the combined addition of V and Zr.The three-dimensional(3 D)morphology of Fe-rich phase includes granular,short rod-like,simple branch and multi-branch structures.The individual addition of V and Zr has no significant effect on the morphology of Fe-rich phase;but the combined addition of V and Zr significantly increases the number and volume fraction of Fe-rich phase with small size(diameter£15μm),the number of branches in the largest Fe-rich phase is significantly reduced,resulting in the improvement of elongation.This work provides a theoretical basis for the development of new recycled Al-Mg-Si alloys in industrial application.展开更多
Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent therma...Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
基金Supported by the Special Educating Project of the Talent for Carbon Peak and Carbon Neutrality of University of Chinese Academy of Sciences(E3E56501A2)。
文摘Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recycling.However,the current battery management technology faces significant challenges,and there is room for development.Digital twin(DT),as a technology that collectively senses,evaluates,predicts,and optimizes characteristics,is promising to contribute to redox flow batteries’operation,maintenance,and management.This paper begins with a brief description of redox flow batteries,followed by a short explanation of the concept and application of DTs.DTs have already made some progress in the field of batteries,and can be applied to solve the problems of redox flow batteries in terms of thermal management and system optimization.Finally,the paper analyzes the combination of redox flow battery and DT architecture,which is expected to contribute to developing DT technology for redox flow batteries.
文摘Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation.Traditional restoration algorithms based on Zernike polynomials(ZPs)often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components,so we proposed a Principal-Component-Analysis-based method for representing phase aberrations.This paper discusses the factors influencing the accuracy of restoration,mainly including the sample space size and the sampling interval of D/r_(0),on the basis of characterizing phase aberrations by Principal Components(PCs).The experimental results show that a larger D/r_(0)sampling interval can ensure the generalization ability and robustness of the principal components in the case of a limited amount of original data,which can help to achieve high-precision deployment of the model in practical applications quickly.In the environment with relatively strong turbulence in the test set of D/r_(0)=24,the use of 34 terms of PCs can improve the corrected Strehl ratio(SR)from 0.007 to 0.1585,while the Strehl ratio of the light spot after restoration using 34 terms of ZPs is only 0.0215,demonstrating almost no correction effect.The results indicate that PCs can serve as a better alternative in representing and restoring the characteristics of atmospheric turbulence induced phase aberrations.These findings pave the way to use PCs of phase aberrations with fewer terms than traditional ZPs to achieve data dimensionality reduction,and offer a reference to accelerate and stabilize the model and deep learning based adaptive optics correction.
基金National Natural Science Foundation of China (52202139, 52072178)。
文摘Pb(Zr,Ti)O_(3)-Pb(Zn_(1/3)Nb_(2/3))O_(3) (PZT-PZN) based ceramics, as important piezoelectric materials, have a wide range of applications in fields such as sensors and actuators, thus the optimization of their piezoelectric properties has been a hot research topic. This study investigated the effects of phase boundary engineering and domain engineering on (1-x)[0.8Pb(Zr_(0.5)Ti_(0.5))O_(3)-0.2Pb(Zn_(1/3)Nb_(2/3))O_(3)]-xBi(Zn_(0.5)Ti_(0.5))O_(3) ((1-x)(0.8PZT-0.2PZN)- xBZT) ceramic to obtain excellent piezoelectric properties. The crystal phase structure and microstructure of ceramic samples were characterized. The results showed that all samples had a pure perovskite structure, and the addition of BZT gradually increased the grain size. The addition of BZT caused a phase transition in ceramic samples from the morphotropic phase boundary (MPB) towards the tetragonal phase region, which is crucial for optimizing piezoelectric properties. By adjusting content of BZT and precisely controlling position of the phase boundary, the piezoelectric performance can be optimized. Domain structure is one of the key factors affecting piezoelectric performance. By using domain engineering techniques to optimize grain size and domain size, piezoelectric properties of ceramic samples have been significantly improved. Specifically, excellent piezoelectric properties (piezoelectric constant d_(33)=320 pC/N, electromechanical coupling factor kp=0.44) were obtained simultaneously for x=0.08. Based on experimental results and theoretical analysis, influence mechanisms of phase boundary engineering and domain engineering on piezoelectric properties were explored. The study shows that addition of BZT not only promotes grain growth, but also optimizes the domain structure, enabling the polarization reversal process easier, thereby improving piezoelectric properties. These research results not only provide new ideas for the design of high-performance piezoelectric ceramics, but also lay a theoretical foundation for development of related electronic devices.
文摘During the propagation of high-power lasers within internal channels,the laser beam heats the propagation medium,causing the thermal blooming effect that degrades the beam quality at the output.The intricate configuration of the optical path within the internal channel necessitates complex and time-consuming efforts to assess the impact of thermal blooming effect on the optical path.To meet the engineering need for rapid evaluation of thermal blooming effect in optical paths,this study proposed a rapid simulation method for the thermal blooming effect in internal optical paths based on the finite element method.This method discretized the fluid region into infinitesimal elements and employed finite element method for flow field analysis.A simplified analytical model of the flow field region in complex internal channels was established,and regions with similar thermal blooming effect were divided within this model.Based on the calculated optical path differences within these regions,numerical simulations of phase distortion caused by thermal blooming were conducted.The calculated result were compared with those obtained using the existing methods.The findings reveal that for complex optical paths,the discrepancy between the two approaches is less than 3.6%,with similar phase distortion patterns observed.For L-type units,this method and the existing methods identify the same primary factors influencing aberrations and exhibit consistent trends in their variation.This method was used to analyze the impact of thermal blooming effect in a straight channel under different gravity directions.The results show that phase distortion varies with changes in the direction of gravity,and the magnitude of the phase difference is strongly correlated with the component of gravity perpendicular to the optical axis.Compared to the existing methods,this approach offers greater flexibility,obviates the need for complex custom analysis programming.The analytical results of this method enable a rapid assessment of the thermal blooming effect in optical paths within the internal channel.This is especially useful during the engineering design.These results also provide crucial references for developing strategies to suppress thermal blooming effect.
文摘This study systematically investigated the effects of experimental conditions,crystal phase,and microstructure on the preparation of V_(2)O_(3)for vanadium flow batteries by reducing ammonium metavanadate extracted from waste catalyst.The optimized experimental conditions were determined as follows:the CO reduction temperature was set at 575℃,the reduction time was 1 hour,the CO flow rate was 50 mL/min,and furnace cooling was performed subsequently.Under these conditions,the samples obtained were predominantly composed of single-phase V_(2)O_(3).Microstructural analysis reveals tightly packed grain configurations exhibiting flake-like or block-like morphologies.Significantly,the as-synthesized V_(2)O_(3)demonstrates sufficient purity for fabricating high-performance electrolytes in all-vanadium flow batteries,showing promising electrochemical applicability.
基金Project(202203021221138)supported by the Collaborative Innovation Center for Shanxi Advanced Permanent Materials and Technologythe 1331 Engineering of Shanxi ProvinceFundamental Research Program of Shanxi Province,China。
文摘Al-doped manganese dioxide(MnO_(2))was synthesized by simple hydrothermal method,and a controllable phase transition of the MnO_(2)crystal phase fromβtoδwas achieved.The effects of Al doping concentration on the structure and electrochemical properties of electrode materials were studied in detail.The results show that the controlled synthesis requires a synergy between KMnO_(4),MnCl_(2)and AlCl_(3),and that Al^(3+)plays an important role.Compared with the pure phase MnO_(2),the crystallinity of Al-doped MnO_(2)decreases and the specific surface area increases,which provides more active sites for the electrode material.When 3 mmol Al^(3+)is added,the prepared MnO_(2)-3 has the largest specific capacitance and the highest rate performance.The energy density of the asymmetric supercapacitor(ASC)with MnO_(2)-3 as the positive electrode and activated carbon(AC)as the negative electrode can reach 18.4 W·h/kg at the power density of 400 W/kg,and the capacity can maintain 90%of the initial value after 20000 cycles,indicating that Al-doped MnO_(2)has certain practical application value.This study provides favorable guidance for MnO_(2)as a high performance electrode material.
基金Project(2022YFC3901501)supported by the National Key R&D Program of ChinaProject(U20A20273)supported by the National Natural Science Foundation of China+1 种基金Project(2022JJ10078)supported by the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,ChinaProject(2021RC3005)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of equal strength,and the stirring in the central area of the melt is insufficient,which restricts the efficient progress of the smelting reaction.This study proposes a strong-weak coupling oxygen supply method and establishes an equivalent model based on a large bottom-blown furnace(LBBF)of an enterprise to simulate the bubble characteristics and flow characteristics of the molten pool.The results show that adjusting the flow ratio between the two rows of oxygen lances can create a“strong”and a“weak”coexisting source of disturbance in an LBBF.It is worth noting that when the flow rate ratio of the two rows of oxygen lances is 1.6,the peak velocity generated by the“strong”distur bance source in the molten pool increases by 18.92%,and the disturbance range increases.This method effectively strengthens the stirring in the central area of the molten pool,improves smelting efficiency,and does not produce harmful melt splashes.It provides important guidance for optimizing production practice.
基金Project(2024YEE0109100) supported by the National Key R&D Program of ChinaProjects(52074131,52104373) supported by the National Natural Science Foundation of ChinaProjects(2022YFJH001,2024YFJH001) supported by the Science and Technology Plan Program of Qingyuan City,China。
文摘Trace amounts of Zr and V can increase the recrystallization temperature of Al-Mg-Si wrought aluminum alloys,which is expected to regulate the recrystallization grain.In this paper,trace amounts of V and Zr were added to recycled Al-Mg-Si alloys,and their e ffects on the microstructure and mechanical properties of the cast alloys were studied by scanning electron microscopy(SEM)and synchrotron radiation X-ray tomography(SRXT).The results show that the addition of Zr significantly increases the grain sizes due to the“Zr poisoning”;V addition has no significant effect on the grain size.The morphology of Fe-rich phase gradually changes from the large Chinese-script shape to the fine short rod and curved long strip shape,and the distribution uniformity is improved with the combined addition of V and Zr.The three-dimensional(3 D)morphology of Fe-rich phase includes granular,short rod-like,simple branch and multi-branch structures.The individual addition of V and Zr has no significant effect on the morphology of Fe-rich phase;but the combined addition of V and Zr significantly increases the number and volume fraction of Fe-rich phase with small size(diameter£15μm),the number of branches in the largest Fe-rich phase is significantly reduced,resulting in the improvement of elongation.This work provides a theoretical basis for the development of new recycled Al-Mg-Si alloys in industrial application.
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023005)the National Natural Science Foundation of China(Grant No.22375191).
文摘Nowadays, ultrafine explosives are widely used in military fields. Ultrafine 2,2',4,4',6,6'-hexanitrostilbene(HNS) has emerged as an optimal primer for explosion foil initiators due to its excellent thermal stability and high-voltage short-pulse initiation performance. However, the solid phase ripening of ultrafine HNS leads to a degradation in its impact detonation performance. Previous studies have indicated that residual dimethyl formamide(DMF), which is present in ultrafine HNS prepared using the recrystallization method, affects ultrafine HNS ripening. The mechanism of residual solvent effects on solid phase ripening of ultrafine HNS is unclear. In this work, the specific surface area(SSA) derived from small angle X-ray scattering(SAXS) was utilized for kinetic fitting analysis to explore the mechanism by which residual solvents enhance the solid phase ripening of ultrafine HNS. The results of the SSA measured by insitu SAXS under conditions of 150℃ for 40 h revealed that the sample with 0.2% residual DMF exhibited a 21.51% decrease in SSA, whereas the sample with only 0.04% residual DMF showed a decrease of 15.66%.Furthermore, the higher amounts of residual DMF accelerated the reduction in SSA with time. Kinetic fitting analysis demonstrated that reducing residual DMF would lower both the activation energy and the pre-exponential factor, consequently decreasing the rate constant of solid phase ripening. The mechanism was speculated that it primarily facilitated the Ostwald ripening(OR). Additionally, contrast variation small angle X-ray scattering(CV-SAXS) confirmed that coating of ultrafine HNS particles is an effective method for inhibiting ripening, significantly reducing both the rate and extent of ripening of ultrafine HNS. This study predicts how residual solvents impact the solid phase ripening process of ultrafine HNS and proposes strategies for enhancing the long-term stability of ultrafine explosives.