Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspensi...Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for highspeed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy(GWN-strategy) for immunity to track irregularities and an edge sample training strategy(EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1 DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally,the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line.展开更多
High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is p...High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.展开更多
This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing t...This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.展开更多
Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of...Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure.展开更多
Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.Fo...Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.展开更多
The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks...The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.展开更多
The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, t...The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金supported by the National Nature Science Foundation of China(No.71871188)the Fundamental Research Funds for the Central Universities(No.2682021CX051)supported by China Scholarship Council(No.201707000113)。
文摘Fault detection and isolation of high-speed train suspension systems is of critical importance to guarantee train running safety. Firstly, the existing methods concerning fault detection or isolation of train suspension systems are briefly reviewed and divided into two categories, i.e., model-based and data-driven approaches. The advantages and disadvantages of these two categories of approaches are briefly summarized. Secondly, a 1D convolution network-based fault diagnostic method for highspeed train suspension systems is designed. To improve the robustness of the method, a Gaussian white noise strategy(GWN-strategy) for immunity to track irregularities and an edge sample training strategy(EST-strategy) for immunity to wheel wear are proposed. The whole network is called GWN-EST-1 DCNN method. Thirdly, to show the performance of this method, a multibody dynamics simulation model of a high-speed train is built to generate the lateral acceleration of a bogie frame corresponding to different track irregularities, wheel profiles, and secondary suspension faults. The simulated signals are then inputted into the diagnostic network, and the results show the correctness and superiority of the GWN-EST-1DCNN method. Finally,the 1DCNN method is further validated using tracking data of a CRH3 train running on a high-speed railway line.
基金supported by the National Natural Science Foundation of China(Grant 62273029).
文摘High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.
基金supported by the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period of China (No.2009BAG12A05)
文摘This paper deals with both the leading train and the following train in a train tracking under a four-aspect fixed autoblock system in order to study the optimum operating strategy for energy saving. After analyzing the working principle of the four-aspect fixed autoblock system, an energy-saving control model is created based on the dynamics equation of the Wains. In addition to safety, energy consumption and time error are the main concerns of the model. Based on this model, dynamic speed constraints of the following train are proposed, defined by the leading gain dynamically. At the same time, the static speed constraints defined by the line conditions are also taken into account. The parallel genetic algorithm is used to search the optimum operating strategy. In order to simplify the solving process, the external punishment function is adopted to transform this problem with constraints to the one without constraints. By using the real number coding and the strategy of dividing ramps into three parts, the convergence of GA is accelerated and the length of chromosomes is shortened. The simulation result from a four-aspect fixed autoblock system simulation platform shows that the method can reduce the energy consumption effectively in the premise of ensuring safety and punctuality.
基金the National Natural Science Foundation of China(Nos.51708457,11790283,and 51978587)the Fund from State Key Laboratory of Traction Power(2019TPL-T16)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)the 111 Project(Grant No.B16041)。
文摘Due to the fact that ballastless tracks in highspeed railways are not only subjected to repeated train–track dynamic interaction loads,but also suffer from complex environmental loads,the fundamental understanding of mechanical performance of ballastless tracks under sophisticated service conditions is an increasingly demanding and challenging issue in high-speed railway networks.This work aims to reveal the effect of train–track interaction and environment loads on the mechanical characteristic variation of ballastless tracks in high-speed railways,particularly focusing on the typical interface damage evolution between track layers.To this end,a finite element model of a double-block ballastless track involving the cohesive zone model for the track interface is first established to analyze the mechanical properties of the track interface under the loading–unloading processes of the negative temperature gradient load(TGL)followed by the same cycle of the positive TGL.Subsequently,the effect of wheel–rail longitudinal interactions on the nonlinear dynamic characteristics of the track interface is investigated by using a vehicle-slab track vertical-longitudinal coupled dynamics model.Finally,the influence of dynamic water pressure induced by vehicle dynamic load on the mechanical characteristics and damage evolution of the track interface is elucidated using a fluid–solid coupling method.Results show that the loading history of the positive and negative TGLs has a great impact on the nonlinear development and distribution of the track interface stress and damage;the interface damage could be induced by the wheel–rail longitudinal vibrations at a high vehicle running speed owing to the dynamic amplification effect caused by short wave irregularities;the vehicle dynamic load could produce considerable water pressure that presents nonlinear spatial–temporal characteristics at the track interface,which would lead to the interface failure under a certain condition due to the coupled dynamic effect of vehicle load and water pressure.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52008404)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘Train–track–substructure dynamic interaction is an extension of the vehicle–track coupled dynamics.It contributes to evaluate dynamic interaction and performance between train–track system and its substructures.For the first time,this work devotes to presenting engineering practical methods for modeling and solving such large-scale train–track–substructure interaction systems from a unified viewpoint.In this study,a train consists of several multi-rigid-body vehicles,and the track is modeled by various finite elements.The track length needs only satisfy the length of a train plus boundary length at two sides,despite how long the train moves on the track.The substructures and their interaction matrices to the upper track are established as independent modules,with no need for additionally building the track structures above substructures,and accordingly saving computational cost.Track–substructure local coordinates are defined to assist the confirming of the overlapped portions between the train–track system and the substructural system to effectively combine the cyclic calculation and iterative solution procedures.The advancement of this model lies in its convenience,efficiency and accuracy in continuously considering the vibration participation of multi-types of substructures against the moving of a train on the track.Numerical examples have shown the effectiveness of this method;besides,influence of substructures on train–track dynamic behaviors is illustrated accompanied by clarifying excitation difference of different track irregularity spectrums.
基金financed by FCT/MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020 financially supported by: Base Funding-UIDB/04708/2020 of the CONSTRUCT-Institute of R&D in Structures and Construction-national funds through the FCT/ MCTES (PIDDAC)
文摘The ballastless track is nowadays the most popular railway system due to the required low number of maintenance opera-tions and costs,despite the high investment.The gradual change from ballasted to ballastless tracks has been occurring in Asia,but also in Europe,increasing the number of transition zones.The transition zones are a special area of the railway networks where there is an accelerated process of track degradation,which is a major concern of the railway infrastructure managers.Thus,the accurate prediction of the short-and long-term performance of ballastless tracks in transition zones is an important topic in the current paradigm of building/rehabilitating high-speed lines.This work purposes the development of an advanced 3D model to study the global performance of a ballastless track in an embankment-tunnel transition zone considering the influence of the train speed(220,360,500,and 600 km/h).Moreover,a mitigation measure is also adopted to reduce the stress and displacements levels of the track in the transition.A resilient mat placed in the tunnel and embank-ment aims to soften the transition.The behaviour of the track with the resilient mat is evaluated considering the influence of the train speed,with special attention regarding the critical speed.The used methodology is a novel and hybrid approach that allows including short-term and long-term performance,through the development of a powerful 3D model combined with the implementation of a calibrated empirical permanent deformation model.
文摘The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward.