由于影响乙烯装置能耗的因素较多,有必要采用相关分析筛选与乙烯装置能效相关的因素,以确保分析的全面性与有效性。数据包络分析(DEA)作为一种非参数的效率优化分析,适用于多输入多输出系统的特点能够综合考虑乙烯能效评估中的多...由于影响乙烯装置能耗的因素较多,有必要采用相关分析筛选与乙烯装置能效相关的因素,以确保分析的全面性与有效性。数据包络分析(DEA)作为一种非参数的效率优化分析,适用于多输入多输出系统的特点能够综合考虑乙烯能效评估中的多因素影响。输入输出指标过多或存在不当指标,则会导致 DEA 分辨率过低,需要对输入输出指标降维。为此,提出采用主元分析(PCA)降维的PCA-DEA法,并将该PCA-DEA法应用于某乙烯装置以2001~2010年的月实际生产数据为依据的能效分析中,得到比单纯选用主要指标的DEA算法和未采取PCA降维的DEA算法更好的能效分析结果。通过与单位综合能耗(SEC)对比,验证了PCA-DEA方法的有效性,为乙烯装置能效分析的准确性提供了更为实用的方法。展开更多
焊缝缺陷影响结构安全,缺陷定性是实现结构安全评价的重要基础.研究了一种基于一维局部二元模式(one-dimensional local binary pattern,1-D LBP)算法结合核主成分分析(kernel principal component analysis,KPCA)提取焊缝缺陷回波信号...焊缝缺陷影响结构安全,缺陷定性是实现结构安全评价的重要基础.研究了一种基于一维局部二元模式(one-dimensional local binary pattern,1-D LBP)算法结合核主成分分析(kernel principal component analysis,KPCA)提取焊缝缺陷回波信号特征的方法.采用1-D LBP算法提取缺陷回波信号的LBP特征,通过KPCA对此LBP特征集进行主成分分析,选取贡献率之和超过90%的前N个主成分作为缺陷分类的特征向量,利用基于径向基核函数的支持向量机(support vector machine,SVM)实现了缺陷类型的自动分类.以夹渣、气孔和未焊透三类焊缝缺陷为对象,开展了缺陷特征提取及分类试验.结果表明,使用LBP-KPCA特征进行缺陷分类时,准确率达到96.7%,优于常规特征,为焊缝缺陷分类及无损评价提供了重要参考.展开更多
降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群...降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。展开更多
文摘由于影响乙烯装置能耗的因素较多,有必要采用相关分析筛选与乙烯装置能效相关的因素,以确保分析的全面性与有效性。数据包络分析(DEA)作为一种非参数的效率优化分析,适用于多输入多输出系统的特点能够综合考虑乙烯能效评估中的多因素影响。输入输出指标过多或存在不当指标,则会导致 DEA 分辨率过低,需要对输入输出指标降维。为此,提出采用主元分析(PCA)降维的PCA-DEA法,并将该PCA-DEA法应用于某乙烯装置以2001~2010年的月实际生产数据为依据的能效分析中,得到比单纯选用主要指标的DEA算法和未采取PCA降维的DEA算法更好的能效分析结果。通过与单位综合能耗(SEC)对比,验证了PCA-DEA方法的有效性,为乙烯装置能效分析的准确性提供了更为实用的方法。
文摘降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。