It is well-known that reaction–diffusion systems are used to describe the pattern formation models. In this paper,we will investigate the pattern formation generated by the fractional reaction–diffusion systems. We ...It is well-known that reaction–diffusion systems are used to describe the pattern formation models. In this paper,we will investigate the pattern formation generated by the fractional reaction–diffusion systems. We first explore the mathematical mechanism of the pattern by applying the linear stability analysis for the fractional Gierer–Meinhardt system.Then, an efficient high-precision numerical scheme is used in the numerical simulation. The proposed method is based on an exponential time differencing Runge–Kutta method in temporal direction and a Fourier spectral method in spatial direction. This method has the advantages of high precision, better stability, and less storage. Numerical simulations show that the system control parameters and fractional order exponent have decisive influence on the generation of patterns. Our numerical results verify our theoretical results.展开更多
We investigate the Turing instability and pattern formation mechanism of a plant-wrack model with both self-diffusion and cross-diffusion terms.We first study the effect of self-diffusion on the stability of equilibri...We investigate the Turing instability and pattern formation mechanism of a plant-wrack model with both self-diffusion and cross-diffusion terms.We first study the effect of self-diffusion on the stability of equilibrium.We then derive the conditions for the occurrence of the Turing patterns induced by cross-diffusion based on self-diffusion stability.Next,we analyze the pattern selection by using the amplitude equation and obtain the exact parameter ranges of different types of patterns,including stripe patterns,hexagonal patterns and mixed states.Finally,numerical simulations confirm the theoretical results.展开更多
A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary ...A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.展开更多
The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such ...The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such as normal or fractional Laplace diffusion),namely,assuming that spatial environments of the systems are homogeneous.However,the complexity and heterogeneity of spatial environments of biochemical reactions in vivo can lead to asymmetric diffusion of reactants.Naturally,there arises an open question of how the asymmetric diffusion affects dynamical behaviors of biochemical reaction systems.To answer this,we build a general asymmetric L´evy diffusion model based on the theory of a continuous time random walk.In addition,we investigate the two-species Brusselator model with asymmetric L´evy diffusion,and obtain a general condition for the formation of Turing and wave patterns.More interestingly,we find that even though the Brusselator model with symmetric diffusion cannot produce steady spatial patterns for some parameters,the asymmetry of L´evy diffusion for this model can produce wave patterns.This is different from the previous result that wave instability requires at least a three-species model.In addition,the asymmetry of L´evy diffusion can significantly affect the amplitude and frequency of the spatial patterns.Our results enrich our knowledge of the mechanisms of pattern formation.展开更多
In this paper, we present the amplitude equations for the excited modes in a cross-diffusive predator-prey model with zero-flux boundary conditions. From these equations, the stability of patterns towards uniform and ...In this paper, we present the amplitude equations for the excited modes in a cross-diffusive predator-prey model with zero-flux boundary conditions. From these equations, the stability of patterns towards uniform and inhomogenous perturbations is determined. Furthermore, we present novel numerical evidence of six typical turing patterns, and find that the model dynamics exhibits complex pattern replications: for μ1 〈μ ≤μ2, the steady state is the only stable solution of the model; for μ2 〈 μ ≤ μ4, by increasing the control parameter μ, the sequence Hπ-hexagons→ Hπ- hexagon-stripe mixtures → stripes → H0-hexagon-stripe mixtures → H0-hexagons is observed; for μ 〉 μ4, the stripe pattern emerges. This may enrich the pattern formation in the cross-diffusive predatorprey model.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61573008 and 61703290)Natural Science Foundation of Liaoning Province,China(Grant No.20180550996)
文摘It is well-known that reaction–diffusion systems are used to describe the pattern formation models. In this paper,we will investigate the pattern formation generated by the fractional reaction–diffusion systems. We first explore the mathematical mechanism of the pattern by applying the linear stability analysis for the fractional Gierer–Meinhardt system.Then, an efficient high-precision numerical scheme is used in the numerical simulation. The proposed method is based on an exponential time differencing Runge–Kutta method in temporal direction and a Fourier spectral method in spatial direction. This method has the advantages of high precision, better stability, and less storage. Numerical simulations show that the system control parameters and fractional order exponent have decisive influence on the generation of patterns. Our numerical results verify our theoretical results.
基金the National Natural Science Foundation of China(Grant Nos.10971009,11771033,and12201046)Fundamental Research Funds for the Central Universities(Grant No.BLX201925)China Postdoctoral Science Foundation(Grant No.2020M670175)。
文摘We investigate the Turing instability and pattern formation mechanism of a plant-wrack model with both self-diffusion and cross-diffusion terms.We first study the effect of self-diffusion on the stability of equilibrium.We then derive the conditions for the occurrence of the Turing patterns induced by cross-diffusion based on self-diffusion stability.Next,we analyze the pattern selection by using the amplitude equation and obtain the exact parameter ranges of different types of patterns,including stripe patterns,hexagonal patterns and mixed states.Finally,numerical simulations confirm the theoretical results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275065,12275064,12475203)the Natural Science Foundation of Hebei Province(Grant Nos.A2021201010 and A2024201020)+3 种基金Interdisciplinary Research Program of Natural Science of Hebei University(Grant No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(Grant No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(Grant No.IT2023B03)the Excellent Youth Research Innovation Team of Hebei University(Grant No.QNTD202402)。
文摘A new type of localized oscillatory pattern is presented in a two-layer coupled reaction-diffusion system under conditions in which no Hopf instability can be discerned in either layer.The transitions from stationary patterns to asynchronous and synchronous oscillatory patterns are obtained.A novel method based on decomposing coupled systems into two associated subsystems has been proposed to elucidate the mechanism of formation of oscillating patterns.Linear stability analysis of the associated subsystems reveals that the Turing pattern in one layer induces the other layer locally,undergoes a supercritical Hopf bifurcation and gives rise to localized oscillations.It is found that the sizes and positions of oscillations are determined by the spatial distribution of the Turing patterns.When the size is large,localized traveling waves such as spirals and targets emerge.These results may be useful for deeper understanding of pattern formation in complex systems,particularly multilayered systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62066026,62363027,and 12071408)PhD program of Entrepreneurship and Innovation of Jiangsu Province,Jiangsu University’Blue Project’,the Natural Science Foundation of Jiangxi Province(Grant No.20224BAB202026)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.GJJ2203316).
文摘The formation of spatial patterns is an important issue in reaction–diffusion systems.Previous studies have mainly focused on the spatial patterns in reaction–diffusion models equipped with symmetric diffusion(such as normal or fractional Laplace diffusion),namely,assuming that spatial environments of the systems are homogeneous.However,the complexity and heterogeneity of spatial environments of biochemical reactions in vivo can lead to asymmetric diffusion of reactants.Naturally,there arises an open question of how the asymmetric diffusion affects dynamical behaviors of biochemical reaction systems.To answer this,we build a general asymmetric L´evy diffusion model based on the theory of a continuous time random walk.In addition,we investigate the two-species Brusselator model with asymmetric L´evy diffusion,and obtain a general condition for the formation of Turing and wave patterns.More interestingly,we find that even though the Brusselator model with symmetric diffusion cannot produce steady spatial patterns for some parameters,the asymmetry of L´evy diffusion for this model can produce wave patterns.This is different from the previous result that wave instability requires at least a three-species model.In addition,the asymmetry of L´evy diffusion can significantly affect the amplitude and frequency of the spatial patterns.Our results enrich our knowledge of the mechanisms of pattern formation.
基金supported by the Natural Science Foundation of Zhejiang Province,China (Grant No. Y7080041)the Shanghai Postdoctoral Scientific Program,China (Grant No. 09R21410700)
文摘In this paper, we present the amplitude equations for the excited modes in a cross-diffusive predator-prey model with zero-flux boundary conditions. From these equations, the stability of patterns towards uniform and inhomogenous perturbations is determined. Furthermore, we present novel numerical evidence of six typical turing patterns, and find that the model dynamics exhibits complex pattern replications: for μ1 〈μ ≤μ2, the steady state is the only stable solution of the model; for μ2 〈 μ ≤ μ4, by increasing the control parameter μ, the sequence Hπ-hexagons→ Hπ- hexagon-stripe mixtures → stripes → H0-hexagon-stripe mixtures → H0-hexagons is observed; for μ 〉 μ4, the stripe pattern emerges. This may enrich the pattern formation in the cross-diffusive predatorprey model.