Quorum systems have been used to solve the problem of data consistency in distributed fault-tolerance systems. But when intrusions occur, traditional quorum systems have some disadvantages. For example, synchronous qu...Quorum systems have been used to solve the problem of data consistency in distributed fault-tolerance systems. But when intrusions occur, traditional quorum systems have some disadvantages. For example, synchronous quorum systems are subject to DOS attacks, while asynchronous quorum systems need a larger system size (at least 3f+1 for generic data, and f fewer for self-verifying data). In order to solve the problems above, an intrusion-tolerance quorum system (ITQS) of hybrid time model based on trust timely computing base is presented (TTCB). The TTCB is a trust secure real-time component inside the server with a well defined interface and separated from the operation system. It is in the synchronous communication environment while the application layer in the server deals with read-write requests and executes update-copy protocols asynchronously. The architectural hybridization of synchrony and asynchrony can achieve the data consistency and availability correctly. We also build two kinds of ITQSes based on TTCB, i.e., the symmetrical and the asymmetrical TTCB quorum systems. In the performance evaluations, we show that TTCB quorum systems are of smaller size, lower load and higher availability.展开更多
The trustworthiness analysis and evaluation are the bases of the trust chain transfer. In this paper the formal method of trustworthiness analysis of a system based on the noninterfer- ence (NI) theory of the inform...The trustworthiness analysis and evaluation are the bases of the trust chain transfer. In this paper the formal method of trustworthiness analysis of a system based on the noninterfer- ence (NI) theory of the information flow is studied. Firstly, existing methods cannot analyze the impact of the system states on the trustworthiness of software during the process of trust chain trans- fer. To solve this problem, the impact of the system state on trust- worthiness of software is investigated, the run-time mutual interfer- ence behavior of software entitles is described and an interference model of the access control automaton of a system is established. Secondly, based on the intransitive noninterference (INI) theory, a formal analytic method of trustworthiness for trust chain transfer is proposed, providing a theoretical basis for the analysis of dynamic trustworthiness of software during the trust chain transfer process. Thirdly, a prototype system with dynamic trustworthiness on a plat- form with dual core architecture is constructed and a verification algorithm of the system trustworthiness is provided. Finally, the monitor hypothesis is extended to the dynamic monitor hypothe- sis, a theorem of static judgment rule of system trustworthiness is provided, which is useful to prove dynamic trustworthiness of a system at the beginning of system construction. Compared with previous work in this field, this research proposes not only a formal analytic method for the determination of system trustworthiness, but also a modeling method and an analysis algorithm that are feasible for practical implementation.展开更多
基金supported by the National Natural Science Foundation of China (60774091)
文摘Quorum systems have been used to solve the problem of data consistency in distributed fault-tolerance systems. But when intrusions occur, traditional quorum systems have some disadvantages. For example, synchronous quorum systems are subject to DOS attacks, while asynchronous quorum systems need a larger system size (at least 3f+1 for generic data, and f fewer for self-verifying data). In order to solve the problems above, an intrusion-tolerance quorum system (ITQS) of hybrid time model based on trust timely computing base is presented (TTCB). The TTCB is a trust secure real-time component inside the server with a well defined interface and separated from the operation system. It is in the synchronous communication environment while the application layer in the server deals with read-write requests and executes update-copy protocols asynchronously. The architectural hybridization of synchrony and asynchrony can achieve the data consistency and availability correctly. We also build two kinds of ITQSes based on TTCB, i.e., the symmetrical and the asymmetrical TTCB quorum systems. In the performance evaluations, we show that TTCB quorum systems are of smaller size, lower load and higher availability.
基金supported by the Natural Science Foundation of Jiangsu Province(BK2012237)
文摘The trustworthiness analysis and evaluation are the bases of the trust chain transfer. In this paper the formal method of trustworthiness analysis of a system based on the noninterfer- ence (NI) theory of the information flow is studied. Firstly, existing methods cannot analyze the impact of the system states on the trustworthiness of software during the process of trust chain trans- fer. To solve this problem, the impact of the system state on trust- worthiness of software is investigated, the run-time mutual interfer- ence behavior of software entitles is described and an interference model of the access control automaton of a system is established. Secondly, based on the intransitive noninterference (INI) theory, a formal analytic method of trustworthiness for trust chain transfer is proposed, providing a theoretical basis for the analysis of dynamic trustworthiness of software during the trust chain transfer process. Thirdly, a prototype system with dynamic trustworthiness on a plat- form with dual core architecture is constructed and a verification algorithm of the system trustworthiness is provided. Finally, the monitor hypothesis is extended to the dynamic monitor hypothe- sis, a theorem of static judgment rule of system trustworthiness is provided, which is useful to prove dynamic trustworthiness of a system at the beginning of system construction. Compared with previous work in this field, this research proposes not only a formal analytic method for the determination of system trustworthiness, but also a modeling method and an analysis algorithm that are feasible for practical implementation.