2015年12月29日,Oncotarget杂志(IF=6.359)在线发表西北农林科技大学生命科学学院雷鸣教授课题组的最新研究成果“Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate c...2015年12月29日,Oncotarget杂志(IF=6.359)在线发表西北农林科技大学生命科学学院雷鸣教授课题组的最新研究成果“Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells”(DOI:10.18632/oncotarget.6783)。展开更多
Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor ...Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.展开更多
Aim To explore the role of transcription factor Foxp3 and the regulating effect of triptolide (TP) in the progression of myocardial hypertrophy in mice. Methods Fifty male mice were randomly divided into 5 groups, i...Aim To explore the role of transcription factor Foxp3 and the regulating effect of triptolide (TP) in the progression of myocardial hypertrophy in mice. Methods Fifty male mice were randomly divided into 5 groups, i. e., normal control group, myocardial hypertrophy model group and TP (10, 30, 90μg · kg^-1) treated groups. Myocardial hypertrophy was induced by isoprenaline (ISO) 5 mg kg^-1 once daily for 14 days. Triptolide was giv- en intraperitoneally once daily. Left ventricle tissue was subjected to HE staining and chemiluminescence technique to assess effects on hypertrophy, fibrosis and inflammation, quantitative assessment of hypertrophy regulatory genes were performed by qPCR and WB. Results After 14 days of treatment, myocardial expressions of Foxp3 and CD4 were significantly reduced in the model group compared with controls. The expression level of TGFβ1 in control group was lower, while that in model group increased obviously. TP could significantly lessen myocardial tissue damage, and reduce the heart index and left ventricular index. Compared with model group, TP (30, 90 μg · kg^-1 ) significantly increased myocardial expression ratio of α-MHC to β-MHC, reduced serumal levels of BNP and troponin I, elevated mRNA and protein expressions of Foxp3 and CD4 in myocardial tissue and reduced the protein expression of TGFβ1 by comparison of those in model group. Conclusion TP can effectively ameliorate myocardial damage and inhibit left ventricular remodeling through elevating the expression of CD4 and Foxp3 and decreasing that of TGF-β.展开更多
文摘2015年12月29日,Oncotarget杂志(IF=6.359)在线发表西北农林科技大学生命科学学院雷鸣教授课题组的最新研究成果“Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells”(DOI:10.18632/oncotarget.6783)。
文摘Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.
文摘Aim To explore the role of transcription factor Foxp3 and the regulating effect of triptolide (TP) in the progression of myocardial hypertrophy in mice. Methods Fifty male mice were randomly divided into 5 groups, i. e., normal control group, myocardial hypertrophy model group and TP (10, 30, 90μg · kg^-1) treated groups. Myocardial hypertrophy was induced by isoprenaline (ISO) 5 mg kg^-1 once daily for 14 days. Triptolide was giv- en intraperitoneally once daily. Left ventricle tissue was subjected to HE staining and chemiluminescence technique to assess effects on hypertrophy, fibrosis and inflammation, quantitative assessment of hypertrophy regulatory genes were performed by qPCR and WB. Results After 14 days of treatment, myocardial expressions of Foxp3 and CD4 were significantly reduced in the model group compared with controls. The expression level of TGFβ1 in control group was lower, while that in model group increased obviously. TP could significantly lessen myocardial tissue damage, and reduce the heart index and left ventricular index. Compared with model group, TP (30, 90 μg · kg^-1 ) significantly increased myocardial expression ratio of α-MHC to β-MHC, reduced serumal levels of BNP and troponin I, elevated mRNA and protein expressions of Foxp3 and CD4 in myocardial tissue and reduced the protein expression of TGFβ1 by comparison of those in model group. Conclusion TP can effectively ameliorate myocardial damage and inhibit left ventricular remodeling through elevating the expression of CD4 and Foxp3 and decreasing that of TGF-β.