期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:5
1
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER transition metal phosphide Templated synthesis ELECTROCATALYSTS
在线阅读 下载PDF
Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries 被引量:2
2
作者 Wenli Shu Junxian Li +3 位作者 Guangwan Zhang Jiashen Meng Xuanpeng Wang Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期142-168,共27页
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel... Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries. 展开更多
关键词 Prussian blue analogs transition metal ions dissolution Suppression strategies Aqueous sodium-ion batteries Aqueous potassium-ion batteries
在线阅读 下载PDF
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:2
3
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 transition metal disulfides Electromagnetic wave absorption Impedance matching Structure engineering modulation
在线阅读 下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
4
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 transition metal chalcogenides Atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
在线阅读 下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
5
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan 《Nano Materials Science》 EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
在线阅读 下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries 被引量:1
6
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic transition metal compounds catalyst Multiple metals/anions
在线阅读 下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
7
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 transition metal dichalcogenides Atomic substitution Tailored structure Tunable bandgap Enhanced applications
在线阅读 下载PDF
Catalytic Effect of Transition Metal Complexes of Triaminoguanidine on the Thermolysis of Energetic NC/DEGDN Composite
8
作者 Mohammed Dourari Ahmed Fouzi Tarchoun +4 位作者 Djalal Trache Amir Abdelaziz Roufaida Tiliouine Tessnim Barkat Weiqiang Pang 《火炸药学报》 EI CAS CSCD 北大核心 2024年第3期209-219,I0003,共12页
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ... The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants. 展开更多
关键词 triaminoguanidine transition metal complexes NITROCELLULOSE diethylene glycol dinitrate catalytic effect
在线阅读 下载PDF
Lewis acid-doped transition metal dichalcogenides for ultraviolet–visible photodetectors
9
作者 Heng Yang Mingjun Ma +6 位作者 Yongfeng Pei Yufan Kang Jialu Yan Dong He Changzhong Jiang Wenqing Li Xiangheng Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期628-635,共8页
Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method f... Ultraviolet photodetectors(UV PDs)are widely used in civilian,scientific,and military fields due to their high sensitivity and low false alarm rates.We present a temperature-dependent Lewis acid p-type doping method for transition metal dichalcogenides(TMDs),which can effectively be used to extend the optical response range.The p-type doping based on surface charge transfer involves the chemical adsorption of the Lewis acid SnCl_(4)as a light absorption layer on the surface of WS_(2),significantly enhancing its UV photodetection performance.Under 365 nm laser irradiation,WS_(2)PDs exhibit response speed of 24 ms/20 ms,responsivity of 660 mA/W,detectivity of 3.3×10^(11)Jones,and external quantum efficiency of 226%.Moreover,we successfully apply this doping method to other TMDs materials(such as MoS_(2),MoSe_(2),and WSe_(2))and fabricate WS_(2) lateral p–n heterojunction PDs. 展开更多
关键词 two-dimensional(2D)materials p-type doping transition metal dichalcogenides PHOTODETECTORS
在线阅读 下载PDF
Recent progress on transition metal oxides and carbon-supported transition metal oxides as catalysts for thermal decomposition of ammonium perchlorate 被引量:3
10
作者 Teng Chen Yi-wen Hu +1 位作者 Cai Zhang Zhao-jian Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1471-1485,共15页
As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.... As a main oxidizer in solid composite propellants,ammonium perchlorate(AP)plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid composite propellants.To improve the performance of solid composite propellant,it is necessary to take measures to modify the thermal decomposition behavior of AP.In recent years,transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraordinary catalytic activity.In this review,we highlight strategies to enhance the thermal decomposition of AP by tuning morphology,varying the types of metal ion,and coupling with carbon analogue.The enhanced catalytic performance can be ascribed to synergistic effect,increased surface area,more exposed active sites,and accelerated electron transportation and so on.The mechanism of AP decomposition mixed with catalyst has also been briefly summarized.Finally,a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing. 展开更多
关键词 transition metal oxides Carbon-supported transition metal oxides CATALYST Ammonium perchlorate Thermal decomposition
在线阅读 下载PDF
In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution 被引量:2
11
作者 Qiang Chen Yulu Fu +8 位作者 Jialun Jin Wenjie Zang Xiong Liu Xiangyong Zhang Wenzhong Huang Zongkui Kou John Wang Liang Zhou Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期10-16,共7页
Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in... Water splitting has received more and more attention because of its huge potential to generate clean and renewable energy.The highly active and durable oxygen evolution reaction(OER)catalysts play a decisive factor in achieving efficient water splitting.The identification of authentic active origin under the service conditions can prompt a more reasonable design of catalysts together with well-confined micro-/nano-structures to boost the efficiency of water splitting.Herein,Fe,Co,and Ni ternary transition metal dichalcogenide(FCND)nanorod arrays on Ni foam are purposely designed as an active and stable low-cost OER pre-catalyst for the electrolysis of water in alkaline media.The optimized FCND catalyst demonstrated a lower overpotential than the binary and unary counterparts,and a 27-fold rise in kinetic current density at the overpotential of 300 m V compared to the nickel dichalcogenide counterpart.Raman spectra and other structural characterizations at different potentials reveal that the in-situ surface self-reconstruction from FCND to ternary transition metal oxyhydroxides(FCNOH)on catalyst surfaces initiated at about 1.5 V,which is identified as the origin of OER activity.The surface selfreconstruction towards FCNOH also enables excellent stability,without fading upon the test for 50 h. 展开更多
关键词 Surface self-reconstruction transition metal dichalcogenide transition metal oxyhydroxide Oxygen evolution reaction Water splitting
在线阅读 下载PDF
Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing 被引量:13
12
作者 Ki Chang Kwon Ji Hyun Baek +2 位作者 Kootak Hong Soo Young Kim Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期29-58,共30页
Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synapti... Two-dimensional(2D)transition metal chalcogenides(TMC)and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices,particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems.The distinct properties such as high durability,electrical and optical tunability,clean surface,flexibility,and LEGO-staking capability enable simple fabrication with high integration density,energy-efficient operation,and high scalability.This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications,including the promise of 2D TMC materials and heterostructures,as well as the state-of-the-art demonstration of memristive devices.The challenges and future prospects for the development of these emerging materials and devices are also discussed.The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs. 展开更多
关键词 Two-dimensional materials MEMRISTORS Neuromorphic computing Artificial synapses transition metal chalcogenides
在线阅读 下载PDF
Role of transition metal oxides in g-C_(3)N_(4)-based heterojunctions for photocatalysis and supercapacitors 被引量:10
13
作者 Liqi Bai Hongwei Huang +3 位作者 Shixin Yu Deyang Zhang Haitao Huang Yihe Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期214-235,I0007,共23页
g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photo... g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed. 展开更多
关键词 transition metal oxides Carbon nitride HETEROJUNCTION PHOTOCATALYSIS SUPERCAPACITORS
在线阅读 下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:16
14
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 transition metal basic salts ELECTROCATALYTIC Oxygen evolution reaction(OER) Overall water electrolysis
在线阅读 下载PDF
Transition metal-based single-atom catalysts(TM-SACs);rising materials for electrochemical CO_(2) reduction 被引量:7
15
作者 Bishnupad Mohanty Suddhasatwa Basu Bikash Kumar Jena 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期444-471,I0012,共29页
The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain t... The continuous increase of global atmospheric CO_(2) concentrations brutally damages our environment. A series of methods have been developed to convert CO_(2) to valuable fuels and value-added chemicals to maintain the equilibrium of carbon cycles. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is one of the promising methods to produce fuels and chemicals, and it could offer sustainable paths to decrease carbon intensity and support renewable energy. Thus, significant research efforts and highly efficient catalysts are essential for converting CO_(2) into other valuable chemicals and fuels. Transition metal-based single atoms catalysts(TM-SACs) have recently received much attention and offer outstanding electrochemical applications with high activity and selectivity opportunities. By taking advantage of both heterogeneous and homogeneous catalysts, TM-SACs are the new rising star for electrochemical conversion of CO_(2) to the value-added product with high selectivity. In recent years, enormous research effort has been made to synthesize different TM-SACs with different M–Nxsites and study the electrochemical conversion of CO_(2) to CO. This review has discussed the development and characterization of different TMSACs with various catalytic sites, fundamental understanding of the electrochemical process in CO_(2) RR,intrinsic catalytic activity, and molecular strategics of SACs responsible for CO_(2)RR. Furthermore, we extensively review previous studies on 1 st-row transition metals TM-SACs(Ni, Co, Fe, Cu, Zn, Sn) and dual-atom catalysts(DACs) utilized for electrochemical CO_(2) conversions and highlight the opportunities and challenges. 展开更多
关键词 CO_(2)RR Single-atom catalyst SACs Dual-atom catalyst DACs transition metals Support catalysts
在线阅读 下载PDF
The application of nanostructured transition metal sulfides as anodes for lithium ion batteries 被引量:12
16
作者 Jinbao Zhao Yiyong Zhang +2 位作者 Yunhui Wang He Li Yueying Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第6期1536-1554,共19页
With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretic... With wide application of electric vehicles and large-scale in energy storage systems, the requirement ofsecondary batteries with higher power density and better safety gets urgent. Owing to the merits of hightheoretical capacity, relatively low cost and suitable discharge voltage, much attention has been paid tothe transition metal sulfides. Recently, a large amount of research papers have reported about the appli-cation of transition metal sulfides in lithium ion batteries. However, the practical application of transitionmetal sulfides is still impeded by their fast capacity fading and poor rate performance. More well-focusedresearches should be operated towards the commercialization of transition metal sulfides in lithium ionbatteries. In this review, recent development of using transition metal sulfides such as copper sulfides,molybdenum sulfides, cobalt sulfides, and iron sulfides as electrode materials for lithium ion batteriesis presented. In addition, the electrochemical reaction mechanisms and synthetic strategy of transitionmetal sulfides are briefly summarized. The critical issues, challenges, and perspectives providing a fur-ther understanding of the associated electrochemical processes are also discussed. 展开更多
关键词 transition metal sulfides Lithium ion batter ANODE
在线阅读 下载PDF
Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting 被引量:6
17
作者 Li-Ming Cao Jia Zhang +2 位作者 Li-Wen Ding Zi-Yi Du Chun-Ting He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期494-520,共27页
It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molec... It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molecular platforms for the design of highly reactive transition metal phosphides(TMPs), a kind of candidates for high-efficiently electrocatalytic water splitting. The intrinsic activity of the electrocatalysts can be greatly improved via modulating the electronic structure of the catalytic center through the MOF precursors/templates. Moreover, the carbon layer converted in-situ by the organic ligands can not only protect the TMPs from being degraded in the harsh electrochemical environments, but also avoid agglomeration of the catalysts, thereby promoting their activities and stabilities. Furthermore,heteroatom-containing ligands can incorporate N, S or P, etc. atoms into the carbon matrixes after conversion, regulating the coordination microenvironments of the active centers as well as their electronic structures. In this review, we first summarized the latest developments in MOF-derived TMPs by the unique advantages in metal, organic ligand, and morphology regulations for electrocatalytic water splitting. Secondly, we concluded the critical scientific issues currently facing for designing state-of-the-art TMP-based electrocatalysts. Finally, we presented an outlook on this research area, encompassing electrocatalyst construction, catalytic mechanism research, etc. 展开更多
关键词 metal-organic framework transition metal phosphide Water splitting ELECTROCATALYST Electronic structure
在线阅读 下载PDF
Recent Developments of Transition Metal Compounds-Carbon Hybrid Electrodes for High Energy/Power Supercapacitors 被引量:7
18
作者 Kang Ren Zheng Liu +1 位作者 Tong Wei Zhuangjun Fan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期231-262,共32页
Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of port... Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of portable electronics,transportation,and future robotic technologies,supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged.Transition metal compounds(TMCs)possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors.However,the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process,which greatly impede their large-scale applications.Most recently,the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges.Herein,we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies,including conductive carbon skeleton,interface engineering,and electronic structure.Furthermore,the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors. 展开更多
关键词 TMCs/carbon hybrid SUPERCAPACITORS High power density Carbon skeleton Interfacial engineering transition metal electronic structure
在线阅读 下载PDF
Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage 被引量:9
19
作者 Junming Cao Junzhi Li +5 位作者 Dongdong Li Zeyu Yuan Yuming Zhang Valerii Shulga Ziqi Sun Wei Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期153-172,共20页
Combining with the advantages of two-dimensional(2D)nanomaterials,MXenes have shown great potential in next generation rechargeable batteries.Similar with other 2D materials,MXenes generally suffer severe self-agglome... Combining with the advantages of two-dimensional(2D)nanomaterials,MXenes have shown great potential in next generation rechargeable batteries.Similar with other 2D materials,MXenes generally suffer severe self-agglomeration,low capacity,and unsatisfied durability,particularly for larger sodium/potassium ions,compromising their practical values.In this work,a novel ternary heterostructure self-assembled from transition metal selenides(MSe,M=Cu,Ni,and Co),MXene nanosheets and N-rich carbonaceous nanoribbons(CNRibs)with ultrafast ion transport properties is designed for sluggish sodium-ion(SIB)and potassium-ion(PIB)batteries.Benefiting from the diverse chemical characteristics,the positively charged MSe anchored onto the electronegative hydroxy(-OH)functionalized MXene surfaces through electrostatic adsorption,while the fungal-derived CNRibs bonded with the other side of MXene through amino bridging and hydrogen bonds.This unique MXene-based heterostructure prevents the restacking of 2D materials,increases the intrinsic conductivity,and most importantly,provides ultrafast interfacial ion transport pathways and extra surficial and interfacial storage sites,and thus,boosts the high-rate storage performances in SIB and PIB applications.Both the quantitatively kinetic analysis and the density functional theory(DFT)calculations revealed that the interfacial ion transport is several orders higher than that of the pristine MXenes,which delivered much enhanced Na+(536.3 mAh g^(−1)@0.1 A g^(−1))and K^(+)(305.6 mAh g^(−1)@1.0 A g^(−1))storage capabilities and excel-lent long-term cycling stability.Therefore,this work provides new insights into 2D materials engineering and low-cost,but kinetically sluggish post-Li batteries. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene HETEROSTRUCTURE transition metal chalcogenide Sodium and potassium-ions batteries DFT calculation
在线阅读 下载PDF
Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX_2(M= Mo,W;X= O,S,Se,Te):A comparative first-principles study 被引量:6
20
作者 曾范 张卫兵 唐壁玉 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期436-443,共8页
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope... First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible. 展开更多
关键词 transition metal dichalcogenides bilayer structures elastic properties electronic structure
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部