Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
In this paper, the stabilization of a linear SISO plant with variable operating condition is considered. The plant is described by a linear interpolation of proper stable co-prime factorizations of the transfer functi...In this paper, the stabilization of a linear SISO plant with variable operating condition is considered. The plant is described by a linear interpolation of proper stable co-prime factorizations of the transfer functions at two representative operating points. An interpolation of the stabilizing controllers for the representative models is designed to stabilize the plant, and the necessary and sufficient condition for the plant to be stabilized by the proposed controller is presented using the Nevanlinna-Pick interpolation theory. It is shown that the class of stabilization plants via the proposed controller in the paper is larger than that by the controller in reference. An example is also given to illustrate this fact.展开更多
The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. It...The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.展开更多
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
文摘In this paper, the stabilization of a linear SISO plant with variable operating condition is considered. The plant is described by a linear interpolation of proper stable co-prime factorizations of the transfer functions at two representative operating points. An interpolation of the stabilizing controllers for the representative models is designed to stabilize the plant, and the necessary and sufficient condition for the plant to be stabilized by the proposed controller is presented using the Nevanlinna-Pick interpolation theory. It is shown that the class of stabilization plants via the proposed controller in the paper is larger than that by the controller in reference. An example is also given to illustrate this fact.
基金Projects(51108465,71371192)supported by the National Natural Science Foundation of ChinaProject(2014M552165)supported by China Postdoctoral Science FoundationProject(20113187851460)supported by Technology Project of the Ministry of Transport of China
文摘The class of bi-directional optimal velocity models can describe the bi-directional looking effect that usually exists in the reality and is even enhanced with the development of the connected vehicle technologies. Its combined string stability condition can be obtained through the method of the ring-road based string stability analysis. However, the partial string stability about traffic fluctuation propagated backward or forward was neglected, which will be analyzed in detail in this work by the method of transfer function and its H∞ norm from the viewpoint of control theory. Then, through comparing the conditions of combined and partial string stabilities, their relationships can make traffic flow be divided into three distinguishable regions, displaying various combined and partial string stability performance. Finally, the numerical experiments verify the theoretical results and find that the final displaying string stability or instability performance results from the accumulated and offset effects of traffic fluctuations propagated from different directions.